Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere
We show that the symmetry operators for the quantum superintegrable system on the 3-sphere with generic 4-parameter potential form a closed quadratic algebra with 6 linearly independent generators that closes at order 6 (as differential operators). Further there is an algebraic relation at order 8 e...
Saved in:
Date: | 2011 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2011
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147168 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere / E.G. Kalnins, W. Miller Jr., S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 46 назв. — англ. |