Conformal Powers of the Laplacian via Stereographic Projection
A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on E...
Gespeichert in:
Datum: | 2007 |
---|---|
1. Verfasser: | Graham, C.R. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2007
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147207 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Second Order Symmetries of the Conformal Laplacian
von: Michel, J.P., et al.
Veröffentlicht: (2014) -
Finding of the optimal parameters of animated and stereographic rainbow diffractive images
von: Borisov, I.S., et al.
Veröffentlicht: (2008) -
Pointwise estimates of solutions to weighted parabolic p-Laplacian equation via Wolff potential
von: Y. Zozulia
Veröffentlicht: (2022) -
Differential Invariants of Conformal and Projective Surfaces
von: Hubert, E., et al.
Veröffentlicht: (2007) -
A Projective-to-Conformal Fefferman-Type Construction
von: Hammerl, M., et al.
Veröffentlicht: (2017)