Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility

We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure J can be written as the Lie derivative of J −1 along a suitably chosen nonlocal vector field. Moreover, we present a new description f...

Full description

Saved in:
Bibliographic Details
Date:2007
Main Author: Sergyeyev, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2007
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147362
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility / A. Sergyeyev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 32 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine