The Rahman Polynomials Are Bispectral
In a very recent paper, M. Rahman introduced a remarkable family of polynomials in two variables as the eigenfunctions of the transition matrix for a nontrivial Markov chain due to M. Hoare and M. Rahman. I indicate here that these polynomials are bispectral. This should be just one of the many rema...
Gespeichert in:
Datum: | 2007 |
---|---|
1. Verfasser: | Grünbaum, F.A. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2007
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147372 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The Rahman Polynomials Are Bispectral / F.A. Grünbaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 34 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Some Noncommutative Matrix Algebras Arising in the Bispectral Problem
von: Grünbaum, F.A.
Veröffentlicht: (2014) -
Bispectrality of the Complementary Bannai-Ito Polynomials
von: Genest, V.X., et al.
Veröffentlicht: (2013) -
On a Family of 2-Variable Orthogonal Krawtchouk Polynomials
von: Grünbaum, F.A., et al.
Veröffentlicht: (2010) -
A System of Multivariable Krawtchouk Polynomials and a Probabilistic Application
von: Grünbaum, F.A., et al.
Veröffentlicht: (2011) -
Bispectral Analysis of Quadratic Type Transformation of Random Processes
von: Galushko, V. G.
Veröffentlicht: (2013)