A Lorentz-Covariant Connection for Canonical Gravity

We construct a Lorentz-covariant connection in the context of first order canonical gravity with non-vanishing Barbero-Immirzi parameter. To do so, we start with the phase space formulation derived from the canonical analysis of the Holst action in which the second class constraints have been solved...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Geiller, M., Lachièze-Rey, M., Noui, K., Sardelli, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147410
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Lorentz-Covariant Connection for Canonical Gravity / M. Geiller, M. Lachièze-Rey, K. Noui, F. Sardelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147410
record_format dspace
fulltext
spelling irk-123456789-1474102019-02-15T01:23:36Z A Lorentz-Covariant Connection for Canonical Gravity Geiller, M. Lachièze-Rey, M. Noui, K. Sardelli, F. We construct a Lorentz-covariant connection in the context of first order canonical gravity with non-vanishing Barbero-Immirzi parameter. To do so, we start with the phase space formulation derived from the canonical analysis of the Holst action in which the second class constraints have been solved explicitly. This allows us to avoid the use of Dirac brackets. In this context, we show that there is a ''unique'' Lorentz-covariant connection which is commutative in the sense of the Poisson bracket, and which furthermore agrees with the connection found by Alexandrov using the Dirac bracket. This result opens a new way toward the understanding of Lorentz-covariant loop quantum gravity. 2011 Article A Lorentz-Covariant Connection for Canonical Gravity / M. Geiller, M. Lachièze-Rey, K. Noui, F. Sardelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 83C05; 83C45 DOI: http://dx.doi.org/10.3842/SIGMA.2011.083 http://dspace.nbuv.gov.ua/handle/123456789/147410 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We construct a Lorentz-covariant connection in the context of first order canonical gravity with non-vanishing Barbero-Immirzi parameter. To do so, we start with the phase space formulation derived from the canonical analysis of the Holst action in which the second class constraints have been solved explicitly. This allows us to avoid the use of Dirac brackets. In this context, we show that there is a ''unique'' Lorentz-covariant connection which is commutative in the sense of the Poisson bracket, and which furthermore agrees with the connection found by Alexandrov using the Dirac bracket. This result opens a new way toward the understanding of Lorentz-covariant loop quantum gravity.
format Article
author Geiller, M.
Lachièze-Rey, M.
Noui, K.
Sardelli, F.
spellingShingle Geiller, M.
Lachièze-Rey, M.
Noui, K.
Sardelli, F.
A Lorentz-Covariant Connection for Canonical Gravity
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Geiller, M.
Lachièze-Rey, M.
Noui, K.
Sardelli, F.
author_sort Geiller, M.
title A Lorentz-Covariant Connection for Canonical Gravity
title_short A Lorentz-Covariant Connection for Canonical Gravity
title_full A Lorentz-Covariant Connection for Canonical Gravity
title_fullStr A Lorentz-Covariant Connection for Canonical Gravity
title_full_unstemmed A Lorentz-Covariant Connection for Canonical Gravity
title_sort lorentz-covariant connection for canonical gravity
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147410
citation_txt A Lorentz-Covariant Connection for Canonical Gravity / M. Geiller, M. Lachièze-Rey, K. Noui, F. Sardelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT geillerm alorentzcovariantconnectionforcanonicalgravity
AT lachiezereym alorentzcovariantconnectionforcanonicalgravity
AT nouik alorentzcovariantconnectionforcanonicalgravity
AT sardellif alorentzcovariantconnectionforcanonicalgravity
AT geillerm lorentzcovariantconnectionforcanonicalgravity
AT lachiezereym lorentzcovariantconnectionforcanonicalgravity
AT nouik lorentzcovariantconnectionforcanonicalgravity
AT sardellif lorentzcovariantconnectionforcanonicalgravity
first_indexed 2025-07-11T02:02:03Z
last_indexed 2025-07-11T02:02:03Z
_version_ 1837314157903347712