Using of proton beam writing techniques for fabrication of micro difraction gratings

To obtain micrometric gratings with a high aspect ratio by lithographic technique, it is proposed to use a proton beam focused in a line and electromagnetic scanning in the transverse direction to irradiate the resistive material. Numerical modeling is carried out to optimize the parameters of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Ponomarev, A.G., Kolinko, S.V., Rebrov, V.A., Kolomiets, V.N., Kravchenko, S.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147662
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Using of proton beam writing techniques for fabrication of micro difraction gratings / A.G. Ponomarev, S.V. Kolinko, V.A. Rebrov, V.N. Kolomiets, S.N. Kravchenko // Вопросы атомной науки и техники. — 2018. — № 4. — С. 285-288. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147662
record_format dspace
spelling irk-123456789-1476622019-02-16T01:23:49Z Using of proton beam writing techniques for fabrication of micro difraction gratings Ponomarev, A.G. Kolinko, S.V. Rebrov, V.A. Kolomiets, V.N. Kravchenko, S.N. Приложения и технологии To obtain micrometric gratings with a high aspect ratio by lithographic technique, it is proposed to use a proton beam focused in a line and electromagnetic scanning in the transverse direction to irradiate the resistive material. Numerical modeling is carried out to optimize the parameters of the probe forming system for this task. The calculations were confirmed during the experimental implementation of the proposed technique. A grating from the 23.4×2060 μm lines was made. Для виробництва мікродифракційних граток з великим аспектним співвідношенням методом літографії запропоновано застосувати для опромінення фоторезисту протонний пучок, сфокусований в лінію, та електромагнітне сканування в поперечному напрямку. Проведене чисельне моделювання з оптимізації параметрів ЗФС для даної задачі. Розрахунки підтверджено при експериментальній реалізації запропонованого методу, виготовлено гратку зi смугами розмірами 23,4×2060 мкм. Для получения микродифракционных решеток с высоким аспектным соотношением методом литографии предложено использовать для облучения фоторезиста протонный пучок, сфокусированный в линию, и электромагнитное сканирование в поперечном направлении. Проведено численное моделирование по оптимизации параметров ЗФС для данной задачи. Расчеты подтверждены при экспериментальной реализации предложенного метода, получена решетка из полос размерами 23,4×2060 мкм. 2018 Article Using of proton beam writing techniques for fabrication of micro difraction gratings / A.G. Ponomarev, S.V. Kolinko, V.A. Rebrov, V.N. Kolomiets, S.N. Kravchenko // Вопросы атомной науки и техники. — 2018. — № 4. — С. 285-288. — Бібліогр.: 13 назв. — англ. 1562-6016 PACS: 42.82.Cr; 85.40.Hp; 81.16.Nd http://dspace.nbuv.gov.ua/handle/123456789/147662 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Приложения и технологии
Приложения и технологии
spellingShingle Приложения и технологии
Приложения и технологии
Ponomarev, A.G.
Kolinko, S.V.
Rebrov, V.A.
Kolomiets, V.N.
Kravchenko, S.N.
Using of proton beam writing techniques for fabrication of micro difraction gratings
Вопросы атомной науки и техники
description To obtain micrometric gratings with a high aspect ratio by lithographic technique, it is proposed to use a proton beam focused in a line and electromagnetic scanning in the transverse direction to irradiate the resistive material. Numerical modeling is carried out to optimize the parameters of the probe forming system for this task. The calculations were confirmed during the experimental implementation of the proposed technique. A grating from the 23.4×2060 μm lines was made.
format Article
author Ponomarev, A.G.
Kolinko, S.V.
Rebrov, V.A.
Kolomiets, V.N.
Kravchenko, S.N.
author_facet Ponomarev, A.G.
Kolinko, S.V.
Rebrov, V.A.
Kolomiets, V.N.
Kravchenko, S.N.
author_sort Ponomarev, A.G.
title Using of proton beam writing techniques for fabrication of micro difraction gratings
title_short Using of proton beam writing techniques for fabrication of micro difraction gratings
title_full Using of proton beam writing techniques for fabrication of micro difraction gratings
title_fullStr Using of proton beam writing techniques for fabrication of micro difraction gratings
title_full_unstemmed Using of proton beam writing techniques for fabrication of micro difraction gratings
title_sort using of proton beam writing techniques for fabrication of micro difraction gratings
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Приложения и технологии
url http://dspace.nbuv.gov.ua/handle/123456789/147662
citation_txt Using of proton beam writing techniques for fabrication of micro difraction gratings / A.G. Ponomarev, S.V. Kolinko, V.A. Rebrov, V.N. Kolomiets, S.N. Kravchenko // Вопросы атомной науки и техники. — 2018. — № 4. — С. 285-288. — Бібліогр.: 13 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT ponomarevag usingofprotonbeamwritingtechniquesforfabricationofmicrodifractiongratings
AT kolinkosv usingofprotonbeamwritingtechniquesforfabricationofmicrodifractiongratings
AT rebrovva usingofprotonbeamwritingtechniquesforfabricationofmicrodifractiongratings
AT kolomietsvn usingofprotonbeamwritingtechniquesforfabricationofmicrodifractiongratings
AT kravchenkosn usingofprotonbeamwritingtechniquesforfabricationofmicrodifractiongratings
first_indexed 2025-07-11T02:35:51Z
last_indexed 2025-07-11T02:35:51Z
_version_ 1837316297196568576
fulltext ISSN 1562-6016. ВАНТ. 2018. №4(116) 285 USING OF PROTON BEAM WRITING TECHNIQUES FOR FABRICATION OF MICRO DIFRACTION GRATINGS A.G. Ponomarev, S.V. Kolinko, V.A. Rebrov, V.N. Kolomiets, S.N. Kravchenko Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine E-mail: ponom56@gmail.com To obtain micrometric gratings with a high aspect ratio by lithographic technique, it is proposed to use a proton beam focused in a line and electromagnetic scanning in the transverse direction to irradiate the resistive material. Numerical modeling is carried out to optimize the parameters of the probe forming system for this task. The calcula- tions were confirmed during the experimental implementation of the proposed technique. A grating from the 23.4×2060 μm lines was made. PACS: 42.82.Cr; 85.40.Hp; 81.16.Nd INTRODUCTION Micro diffraction gratings are used to obtain a phase contrast image using interference from incoherent radia- tion from a conventional X-ray tube [1 - 3]. Another trend of micro gratings application is generators using diffraction radiation from moving electrons. Such gen- erators are promising in the submillimeter wavelength range. One of the most complex parts of a submillimeter diffraction radiation generator is a reflective diffraction grating [4]. The grating period for submillimeter wave- length diapason should be <100 μm and, as the wave- length decreases, the grating period should also de- crease. An important requirement in both cases is the three-dimensional nature of grating with a high aspect ratio, and when the ratio of the planar dimensions of the lamellas and their height should be in a certain propor- tion. At present, there are several methods for obtaining micro diffraction gratings using X-ray photolithographic methods that require precise photomasks. In this paper an alternative method of irradiating a resistive layer using a focused beam of protons of Megaelectronvolt energies is used. This method of exposure is straight- forward and does not require photomasks. The process of focusing a proton beam accelerated by means of an electrostatic accelerator to energy of several Megaelec- tronvolt is carried out with precision magnetic quadru- pole lenses (MQL). With the electromagnetic deflection system, the beam is scanned over the surface of a ho- mogeneous layer of resistive material in accordance with a given digital pattern [4 - 6]. This lithographic process is called Proton Beam Writing (PBW). In most works on the application of PBW, the beam is focused into a spot with similar dimensions along transverse coordinates. This is due to the complexity of the pattern form. In the case where the pattern consists of parallel lines, it is most optimal to obtain a focused beam in the form of a thin elongated line. In this case, one spot size has micrometric dimensions, and the other is measured in millimeters. This makes it possible to significantly accelerate the irradiation of the resistive material to produce micrometric gratings, which later on, when the electroplating process is developed, is formed into diffraction gratings. In the present work, numerical simulation of beam focusing to a line with given dimensions and maximum current density in the irradiated region is considered. The experimental part shows the beam focusing procedure, the determination of real micrometric dimensions, and the result of pro- ducing of a micro diffraction grating pattern. 1. SIMULATION OF PROTON BEAM FOCUSING Quadrupole optics is used to focus the charged parti- cle beam into the line, which is related to the physical principles of the quadrupole lens, which has a focusing effect in one transverse direction to the beam and defo- cuses the beam in the other transverse direction. How- ever, it is not effective to use one quadrupole lens in the process of beam formation into a line. This is due to the fact that it is possible to obtain a specific beam size in the micrometric direction by appropriately selecting the collimator size in this direction at a known quadrupole lens demagnification factor. You can also obtain a dif- ferent size by choosing the size of the collimator that will increase in the target plane. From these considera- tions we can conclude that in this case we will have a low current density in the region of irradiation of the resistive material, which is due to the inability to control the focusing process in the millimeter range. Therefore, in a focusing system there must be at least two quadru- pole lenses, with two free excitation parameters of each lens. Usually, the focusing system is calculated from the condition of stigmatic focusing of the beam. In this case, it is necessary to select the power of the lenses in such a way that the required beam size on the target is provided in the micrometric direction, in accordance with the stigmatization of the focusing system in this direction. And in the millimeter direction, the lens pow- er is selected to provide the desired beam size with the maximum resulting beam current density. To simulate this focusing process a probe-forming system of a nuclear scanning microprobe of the Analyti- cal Accelerator Complex of the Institute of Applied Physics of the NAS of Ukraine [7] was chosen. Only one doublet of MQL of the final focusing was used, which is located near the target camera. The geometric parameters of the focusing system: The length of the system (from the object collimator to the target) l = 3553 mm; working distance (from the output of the effective field of the last lens to the target) g = 236 mm; effective field lengths MQL L1= 50.67 mm, L2 = 71.41 mm; the distance between the boundaries of the effective field of the lens is a1 = 39.4 mm. The ion- optical characteristics of the focusing system: demagni- fication factors Dx×Dy = (-22.3)×(-5.7); chromatic aber- rations Cpx = 76 , Cpy=82 μm/mrad%; spherical aberra- tions <x/x'3> = -17 μm/mrad3, <x/x'y'2> = -11 μm/mrad3, <y/y'3> = -7 μm/mrad3, <y/x'2y'> = ISSN 1562-6016. ВАНТ. 2018. №4(116) 286 44 μm/mrad3. During the formation of a 1 MeV proton beam, the measured beam brightness distribution in the plane of the object collimator [8] was used on the target, which is the Gaussian distribution in the form b(x,x′,y,y′)=b0bx(x,x′)by(y,y′), (1) 2 2 2 2 2 1exp 2 2(1 ) b k kτ τ ′ ′τ ττ τ τ   ′ ′τ ττ τ = − − +  σ σ− σ σ    τ=(x,y); b0=7 pA/μm2 mrad2; σx=621 μm, σx′=0,088 mrad, kx=-0.41; σy=667 μm, σy′=0,098 mrad, ky=-0.89. The dimensions of the collimators were chosen from the condition for obtaining a focused beam with dimen- sions of 25×2000 μm. Taking into account the ion- optical characteristics, the sizes of the object collimator were chosen equal to 2rx = 550 μm. In the y direction, the object collimator was completely opened 2yr = 4000 μm. The dimensions of the angular collimator in the x direction were chosen to exclude the influence of chromatic and spherical aberrations 2Rx = 720 μm. In the y direction, the angular collimator was completely opened 2Ry = 4000 μm. The process of focusing the beam with a nonuniform distribution in the phase space in the form (1) with allowance for its clipping by object and angular collimators with rectangular windows was performed using the procedure described in detail in [9, 10]. Under the condition of stigmatic focusing, the beam dimensions on the target at the half-height of the current density distribution were dxFWHM × dy25% = 25×280 μm. To obtain the required dimensions, it was necessary to change the lenses excitation to preserve the x dimension and to reach the needed y dimension. a b Fig. 1. The contours of the dependence of the beam size change on the target on the currents in the MQL coils: a) in the x direction at the half-height of the current density distribution; b) in the y direction at the 25% of the distribution maximum In Fig. 1 shows the contours of the dependence of the beam dimensions when the supply currents of the exciting coils of the lenses change. In Fig. 1,b, the con- tours of the beam size change at the half-height of the current density distribution in the x direction dxFWHM shown in Fig. 1,a are superimposed with the size change contours in the direction at 25% of the maximum of this distribution. From Fig. 1,b there are two solutions for powering the lenses that provide focusing to a spot with dimensions dxFWHM × dy25% = 25×2000 μm. A variant with smaller values of the lens current was chosen for the experiment. 2. EXPERIMENTAL PROCEDURE The calculated values of the MQL excitation cur- rents, which ensure the beam focusing in a line with the specified dimensions, were determined on the basis of the experimental dependence of the magnetic induction on the poles of the lenses on the currents in the coils given in [11]. Due to the hysteresis it was necessary to carry out additional focusing on the visual image of the beam on the quartz screen to minimize the beam size in the x direction. In the y direction the size was deter- mined from the visual image. The width of the line is dxFWHM of the focused beam was determined as a result of a standard procedure for scanning a vertically located 75 µm diameter copper wire and detecting the yield of secondary electron emis- sion (SEE) during the interaction of protons with a wire. Since the direction of the wire does not coincide with the beam line, in order to reduce the error of determin- ing the beam dimensions, the vertical slits of the object and angular collimators were reduced to 200 µm. As a result, the shape of the focused beam was about the square. In Fig. 2,a shows a secondary electrons wire image in a scan 500×500 μm. a b Fig. 2. The secondary electrons image of a copper wire (a) and the distribution profile of the current density (b) ISSN 1562-6016. ВАНТ. 2018. №4(116) 287 The processing of the raster consisted of the selec- tion of a series of linear profiles of the yield of second- ary electrons when the beam moved horizontally. The rectangular profile selection area is shown in Fig. 2,a. The method for determining the beam dimensions at a half-height of the current density distribution is given in [12] on the basis of an analysis of the rise front of the yield of secondary electrons. This allows us to deter- mine the distribution profile of the current density of the focused beam, and hence the fool width at the maximum height of the distribution in the cross section. The pro- cessing of a sample of the SEE output profiles from 20 series (see the region shown in Fig. 2,a) is performed. In Fig. 2,b shows one of the profiles of the SEE output and an adjustable curve that allows determining the line width dxFWHM. As a result of processing a series of out- put profiles of the SEE, the size of the focused beam in the line dxFWHM = 22 ± 5 μm was obtained. The meas- urement error is about 20% and is caused by instability in time of the beam current from the electrostatic accel- erator. The measured beam current was ≈ 8 nA. Thus, the rate of exposure dose was ≈180 nC/mm2⋅s. Based on the data given in [13], the required dose for the selected PMMA resist in the production of three-dimensional structures should be> 90 nC/mm2 for a proton beam of MeV energies. Silicon substrates with a layer of PMMA of thickness ≈5 μm were chosen as the samples. The process of exposure of the resistive surface of the sam- ple to obtain a periodic structure was carried out by the focused beam in a line for 1 s. a b Fig. 3. The secondary electrons image of the irradiated and developed region of the resistive layer on a silicon substrate for different magnitudes of the scanning electron microscope magnification In Fig. 3 shows the images of the developed samples obtained with the help of a scanning electron micro- scope. It can be seen from these figures that the experi- mental result agrees satisfactorily with the results of numerical simulation from the sizes of the focused lines, which amounted to ≈23.4×2060 μm. However, it should be noted that there are fillets at the ends of the lines, which is due to the absence of a limitation of the beam brightness distribution in the y direction. CONCLUSIONS To focus the proton beam of Megaelectronvolt ener- gies in a line with given dimensions an approach is pro- posed that allows to calculate the optimum sizes of col- limators and excitation currents of MQL. The input pa- rameters are the beam brightness distribution in the phase space in the object collimator plane and the ion- optical characteristics of the probe-forming system. The results of the numerical simulation are confirmed exper- imentally. The width of the line-focused beam dxFWHM = 22±5 µm is determined by the method of transverse scanning of a 75 µm wire and mathematical processing of the SEE output profiles. After the exposure of silicon substrates with a layer of resistive PMMA material ap- plied and the development, the lines sizes were ≈23.4×2060 μm2 as measured using a scanning electron microscope. REFERENCES 1. C. David, J. Bruder, T. Rohbeck, et al. Fabrication of diffraction gratings for hard X-ray phase contrast imaging // Microelectronic Engineering. 2007, v. 84, p. 1172-1177. 2. Y. Lei, Y. Du, J. Li, et al. Fabrication of x-ray ab- sorption gratings via micro-casting for grating-based phase contrast imaging // J. Micromech. Microeng. 2014, v. 24, p. 015007. 3. V.B. Molodkіn, V.Yu. Storіzhko, S.V. Lіzunova, et al. Novі mozhlivostі stvorennya fazokontrastnix to- mografіv dlya medicini // Nanosistemi, nano- materіali, nanotexnologіi. 2015, v. 13, № 3, p. 469- 502 (in Ukrainian). 4. F. Watt, M.B.H. Breese, A.A. Bettiol. Proton beam writing // Materialstoday. 2007, v. 10, № 6, p. 20- 29. 5. S. Al-Shehri, V. Palitsin, R.P. Webb, G.W. Grime. Fabrication of three-dimensional SU-8 microchan- nels by proton beam writing for microfluidics appli- cations: Fluid flow characterization // Nucl. Instr. and Meth. B. 2015, v. 348, p. 223-228. 6. V.E. Storizhko, V.I. Miroshnichenko, A.G. Ponoma- rev. Izgotovlenie mikro- i nano-razmernyx struktur s primeneniem protonnoj puchkovoj litografii: sov- remennoe sostoyanie i perspektivy razvitiya // Nau- ka ta Innovacії. 2012, v. 8, № 2, p. 17-22 (in Ukrainian). 7. V.E. Storizhko, A.G. Ponomarev, V.A. Rebrov, et al. The Sumy scanning nuclear microprobe: Design features and first tests // Nucl. Instr. and Meth. B. 2007, v. 260, p. 49-54. 8. A.V. Romanenko, A.G. Ponomarev. Formation of ion beam with high current density for micro irradia- tion techniques // Nucl. Instr. and Meth. B. 2015, v. 348, p. 115-118. 9. A.G. Ponomarev, A.A. Ponomarev, V.I. Miroshni- chenko. Nonlinear processes of probe formation of a ISSN 1562-6016. ВАНТ. 2018. №4(116) 288 beam with inhomogeneous phase density at nuclear microprobe // Nucl. Instr. and Meth. B. 2011, v. 269, p. 2197-2201. 10. A.A. Ponomarov, V.I. Miroshnichenko, A.G. Pono- marev, Influence of the beam current density distri- bution on the spatial resolution of a nuclear micro- probe // Nucl. Instr. and Meth. B. 2009, v. 267, p. 2041-2045. 11. V.A. Rebrov, A.G. Ponomarev, V.K. Palchik, N.G. Melnik. The new design of magnetic quadru- pole lens doublet manufactured from a single piece // Nucl. Instr. and Meth. B. 2007, v. 260, p. 34-38. 12. C.N.B. Udalagama, A.A. Bettiol, J.A. van Kan. An automatic beam focusing system for MeV protons // Nucl. Instr. and Meth. B. 2005, v. 231, p. 389-393. 13. A.G. Ponomarev, A.S. Lapin, S.V. Kolinko, et al. Modelirovanie processa sozdaniya mikrokompo- nentov dlya vakuumnoj elektroniki i rentgenovskoj optiki s primeneniem protonno-luchevoj litografii // JNEF. 2017, v. 9, № 6, p. 06010. Article received 01.06.2018 ПРИМЕНЕНИЕ ПРОТОННО-ЛУЧЕВОЙ ЛИТОГРАФИИ ДЛЯ ФАБРИКАЦИИ МИКРОДИФРАКЦИОННЫХ РЕШЕТОК А.Г. Пономарев, С.В. Колинько, В.А. Ребров, В.Н. Коломиец, С.Н. Кравченко Для получения микродифракционных решеток с высоким аспектным соотношением методом литогра- фии предложено использовать для облучения фоторезиста протонный пучок, сфокусированный в линию, и электромагнитное сканирование в поперечном направлении. Проведено численное моделирование по опти- мизации параметров ЗФС для данной задачи. Расчеты подтверждены при экспериментальной реализации предложенного метода, получена решетка из полос размерами 23,4×2060 мкм. ВИКОРИСТАННЯ ПРОТОННО-ПРОМЕНЕВОЇ ЛІТОГРАФІЇ ДЛЯ ФАБРИКАЦІЇ МІКРОДИФРАКЦІЙНИХ ГРАТОК О.Г. Пономарьов, С.В. Колінько, В.А. Ребров, В.М. Коломієць, С.М. Кравченко Для виробництва мікродифракційних граток з великим аспектним співвідношенням методом літографії запропоновано застосувати для опромінення фоторезисту протонний пучок, сфокусований в лінію, та елект- ромагнітне сканування в поперечному напрямку. Проведене чисельне моделювання з оптимізації параметрів ЗФС для даної задачі. Розрахунки підтверджено при експериментальній реалізації запропонованого методу, виготовлено гратку зi смугами розмірами 23,4×2060 мкм. INTRODUCTION 1. SIMULATION OF PROTON BEAM FOCUSING 2. EXPERIMENTAL PROCEDURE CONCLUSIONS references применение ПРОТОННО-ЛУЧЕВОЙ ЛИТОГРАФИИ для ФАБРИКАЦИи МИКРОДИФРАКЦИОННЫХ РЕШЕТОК використання ПРОТОНнО-ПРОМЕНЕВОЇ ЛІТОГРАФІЇ для ФАБРИКАЦІї МІКРОДИФРАКЦІЙНИХ ГРАТОК