Random Matrices with Merging Singularities and the Painlevé V Equation

We study the asymptotic behavior of the partition function and the correlation kernel in random matrix ensembles of the form 1Zn∣∣det(M²−tI)∣∣αe−nTrV(M)dM, where M is an n×n Hermitian matrix, α>−1/2 and t∈R, in double scaling limits where n→∞ and simultaneously t→0. If t is proportional to 1/n²,...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Authors: Claeys, T., Fahs, B.
Format: Article
Language:English
Published: Інститут математики НАН України 2016
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147729
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Random Matrices with Merging Singularities and the Painlevé V Equation / T. Claeys, B. Fahs // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 33 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine