Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models
We study gl(2|1) symmetric integrable models solvable by the nested algebraic Bethe ansatz. Using explicit formulas for the Bethe vectors we derive the actions of the monodromy matrix entries onto these vectors. We show that the result of these actions is a finite linear combination of Bethe vectors...
Saved in:
Date: | 2016 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2016
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147864 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models / A. Hutsalyuk. A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 54 назв. — англ. |