Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds
In this work, we show that an autonomous dynamical system defined by a nonvanishing vector field on an orientable three-dimensional manifold is globally bi-Hamiltonian if and only if the first Chern class of the normal bundle of the given vector field vanishes. Furthermore, the bi-Hamiltonian struct...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | Işim Efe, M., Abadoğlu, E. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2017
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148578 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds / M. Işim Efe, E. Abadoğlu // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Quasi-Bi-Hamiltonian Structures of the 2-Dimensional Kepler Problem
von: Cariñena, J.F., et al.
Veröffentlicht: (2016) -
Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
von: Beffa, G.M.
Veröffentlicht: (2008) -
On a Recently Introduced Fifth-Order Bi-Hamiltonian Equation and Trivially Related Hamiltonian Operators
von: Talati, D., et al.
Veröffentlicht: (2011) -
Existence and multiplicity of solutions for a class of Hamiltonian systems
von: K. Khachnaoui
Veröffentlicht: (2024) -
On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems
von: Santoprete, M.
Veröffentlicht: (2015)