Classical and Quantum Superintegrability of Stäckel Systems
In this paper we discuss maximal superintegrability of both classical and quantum Stäckel systems. We prove a sufficient condition for a flat or constant curvature Stäckel system to be maximally superintegrable. Further, we prove a sufficient condition for a Stäckel transform to preserve maximal sup...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148607 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Classical and Quantum Superintegrability of Stäckel Systems / M. Błaszak, // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this paper we discuss maximal superintegrability of both classical and quantum Stäckel systems. We prove a sufficient condition for a flat or constant curvature Stäckel system to be maximally superintegrable. Further, we prove a sufficient condition for a Stäckel transform to preserve maximal superintegrability and we apply this condition to our class of Stäckel systems, which yields new maximally superintegrable systems as conformal deformations of the original systems. Further, we demonstrate how to perform the procedure of minimal quantization to considered systems in order to produce quantum superintegrable and quantum separable systems. |
---|