The Fock-Rosly Poisson Structure as Defined by a Quasi-Triangular r-Matrix
We reformulate the Poisson structure discovered by Fock and Rosly on moduli spaces of flat connections over marked surfaces in the framework of Poisson structures defined by Lie algebra actions and quasitriangular r-matrices, and we show that it is an example of a mixed product Poisson structure ass...
Gespeichert in:
Datum: | 2017 |
---|---|
1. Verfasser: | Mouquin, V. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2017
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148752 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The Fock-Rosly Poisson Structure as Defined by a Quasi-Triangular r-Matrix / V. Mouquin // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Rational Calogero-Moser Model: Explicit Form and r-Matrix of the Second Poisson Structure
von: Avan, J., et al.
Veröffentlicht: (2012) -
On Spectrum of Differential Operator with Block-Triangular Matrix Coefficients
von: Kholkin, A.M., et al.
Veröffentlicht: (2014) -
On approximation of the quasi-smooth functions by their Poisson-type integrals
von: Ju. I. Kharkevich
Veröffentlicht: (2017) -
Solutions of matrix equation AX + YB = C with triangular coefficients
von: N. S. Dzhaliuk
Veröffentlicht: (2019) -
Nuclear structure study of even-even 24-42Si isotopes using Skyrme - Hartree - Fock, and Hartree - Fock - Bogolyubov methods
von: H. A.A. Abdul, et al.
Veröffentlicht: (2020)