Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians
In this paper we present a novel construction of non-homogeneous hydrodynamic equations from what we call quasi-Stäckel systems, that is non-commutatively integrable systems constructed from appropriate maximally superintegrable Stäckel systems. We describe the relations between Poisson algebras gen...
Saved in:
Date: | 2017 |
---|---|
Main Authors: | Marciniak, K., Błaszak, M. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2017
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148772 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians / K. Marciniak, M. Błaszak // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Classical and Quantum Superintegrability of Stäckel Systems
by: Błaszak, M., et al.
Published: (2017) -
Superintegrable Stäckel Systems on the Plane: Elliptic and Parabolic Coordinates
by: Tsiganov, A.V.
Published: (2012) -
Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
by: Ballesteros, A., et al.
Published: (2011) -
Quasi-Bi-Hamiltonian Structures of the 2-Dimensional Kepler Problem
by: Cariñena, J.F., et al.
Published: (2016) -
Kinetic theory of non-hamiltonian statistical ensembles
by: Zhukov, A.V., et al.
Published: (2006)