Homogeneous Poisson Structures on Loop Spaces of Symmetric Spaces

This paper is a sequel to [Caine A., Pickrell D., Int. Math. Res. Not., to appear, arXiv:0710.4484], where we studied the Hamiltonian systems which arise from the Evens-Lu construction of homogeneous Poisson structures on both compact and noncompact type symmetric spaces. In this paper we consider l...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Pickrell, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149016
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Homogeneous Poisson Structures on Loop Spaces of Symmetric Spaces / D. Pickrell // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This paper is a sequel to [Caine A., Pickrell D., Int. Math. Res. Not., to appear, arXiv:0710.4484], where we studied the Hamiltonian systems which arise from the Evens-Lu construction of homogeneous Poisson structures on both compact and noncompact type symmetric spaces. In this paper we consider loop space analogues. Many of the results extend in a relatively routine way to the loop space setting, but new issues emerge. The main point of this paper is to spell out the meaning of the results, especially in the SU(2) case. Applications include integral formulas and factorizations for Toeplitz determinants.