A Method for Weight Multiplicity Computation Based on Berezin Quantization

Let G be a compact semisimple Lie group and T be a maximal torus of G. We describe a method for weight multiplicity computation in unitary irreducible representations of G, based on the theory of Berezin quantization on G/T. Let Γhol(Lλ) be the reproducing kernel Hilbert space of holomorphic section...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
1. Verfasser: Bar-Moshe, D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2009
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/149125
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Method for Weight Multiplicity Computation Based on Berezin Quantization / D. Bar-Moshe // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Let G be a compact semisimple Lie group and T be a maximal torus of G. We describe a method for weight multiplicity computation in unitary irreducible representations of G, based on the theory of Berezin quantization on G/T. Let Γhol(Lλ) be the reproducing kernel Hilbert space of holomorphic sections of the homogeneous line bundle Lλ over G/T associated with the highest weight λ of the irreducible representation πλ of G. The multiplicity of a weight m in πλ is computed from functional analytical structure of the Berezin symbol of the projector in Γhol(Lλ) onto subspace of weight m. We describe a method of the construction of this symbol and the evaluation of the weight multiplicity as a rank of a Hermitian form. The application of this method is described in a number of examples.