Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case
The Heun equation can be rewritten as an eigenvalue equation for an ordinary differential operator of the form −d²/dx²+V(g;x), where the potential is an elliptic function depending on a coupling vector g ∈ R⁴. Alternatively, this operator arises from the BC1 specialization of the BCN elliptic nonrel...
Saved in:
Date: | 2009 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2009
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/149153 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case / Simon N.M. Ruijsenaars // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. |