Intertwining Symmetry Algebras of Quantum Superintegrable Systems
We present an algebraic study of a kind of quantum systems belonging to a family of superintegrable Hamiltonian systems in terms of shape-invariant intertwinig operators, that span pairs of Lie algebras like (su(n),so(2n)) or (su(p,q),so(2p,2q)). The eigenstates of the associated Hamiltonian hierarc...
Saved in:
Date: | 2009 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2009
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/149167 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Intertwining Symmetry Algebras of Quantum Superintegrable Systems / J.A. Calzada, J. Negro, M.A. del Olmo // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 29 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | We present an algebraic study of a kind of quantum systems belonging to a family of superintegrable Hamiltonian systems in terms of shape-invariant intertwinig operators, that span pairs of Lie algebras like (su(n),so(2n)) or (su(p,q),so(2p,2q)). The eigenstates of the associated Hamiltonian hierarchies belong to unitary representations of these algebras. It is shown that these intertwining operators, related with separable coordinates for the system, are very useful to determine eigenvalues and eigenfunctions of the Hamiltonians in the hierarchy. An study of the corresponding superintegrable classical systems is also included for the sake of completness. |
---|