Intertwining Symmetry Algebras of Quantum Superintegrable Systems

We present an algebraic study of a kind of quantum systems belonging to a family of superintegrable Hamiltonian systems in terms of shape-invariant intertwinig operators, that span pairs of Lie algebras like (su(n),so(2n)) or (su(p,q),so(2p,2q)). The eigenstates of the associated Hamiltonian hierarc...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Calzada, J.A., Negro, J., del Olmo, M.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149167
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Intertwining Symmetry Algebras of Quantum Superintegrable Systems / J.A. Calzada, J. Negro, M.A. del Olmo // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 29 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We present an algebraic study of a kind of quantum systems belonging to a family of superintegrable Hamiltonian systems in terms of shape-invariant intertwinig operators, that span pairs of Lie algebras like (su(n),so(2n)) or (su(p,q),so(2p,2q)). The eigenstates of the associated Hamiltonian hierarchies belong to unitary representations of these algebras. It is shown that these intertwining operators, related with separable coordinates for the system, are very useful to determine eigenvalues and eigenfunctions of the Hamiltonians in the hierarchy. An study of the corresponding superintegrable classical systems is also included for the sake of completness.