Nonlocal Operational Calculi for Dunkl Operators

The one-dimensional Dunkl operator Dk with a non-negative parameter k, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of Dk, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operationa...

Full description

Saved in:
Bibliographic Details
Date:2009
Main Authors: Dimovski, I.H., Hristov, V.Z.
Format: Article
Language:English
Published: Інститут математики НАН України 2009
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/149174
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Nonlocal Operational Calculi for Dunkl Operators / I.H. Dimovski, V.Z. Hristov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The one-dimensional Dunkl operator Dk with a non-negative parameter k, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of Dk, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations P(Dk)u = f with a given polynomial P is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.