Induced Modules for Affine Lie Algebras
We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of P-induced G-modules and the category of weight P-...
Saved in:
Date: | 2009 |
---|---|
Main Authors: | Futorny, V., Kashuba, I. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2009
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/149179 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Induced Modules for Affine Lie Algebras / V. Futorny, I. Kashuba // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Realizations of affine Lie algebras
by: Futorny, V.
Published: (2005) -
Realizations of affine Lie algebras
by: Futorny, Vyacheslav
Published: (2018) -
String Functions for Affine Lie Algebras Integrable Modules
by: Kulish, P., et al.
Published: (2008) -
Free field realizations of certain modules for affine Lie algebra slˆ(n,C)
by: Martins, R.A.
Published: (2011) -
Free field realizations of certain modules for affine Lie algebra \(\widehat{sl}(n,\mathbb{C})\)
by: Martins, Renato A.
Published: (2018)