The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas

To every Darboux integrable system there is an associated Lie group G which is a fundamental invariant of the system and which we call the Vessiot group. This article shows that solving the Cauchy problem for a Darboux integrable partial differential equation can be reduced to solving an equation of...

Full description

Saved in:
Bibliographic Details
Date:2013
Main Authors: Anderson, I.M., Fels, M.E.
Format: Article
Language:English
Published: Інститут математики НАН України 2013
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/149223
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas / I.M. Anderson, M.E. Fels // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine