A Variation of the q-Painlevé System with Affine Weyl Group Symmetry of Type E₇⁽¹⁾
Recently a certain q-Painlevé type system has been obtained from a reduction of the q-Garnier system. In this paper it is shown that the q-Painlevé type system is associated with another realization of the affine Weyl group symmetry of type E₇⁽¹⁾ and is different from the well-known q-Painlevé syste...
Gespeichert in:
Datum: | 2017 |
---|---|
1. Verfasser: | Nagao, H. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2017
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/149269 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | A Variation of the q-Painlevé System with Affine Weyl Group Symmetry of Type E₇⁽¹⁾ / H. Nagao // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 50 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Hypergeometric τ-Functions of the q-Painlevé System of Type E₇⁽¹⁾
von: Masuda, T.
Veröffentlicht: (2009) -
Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System
von: Witte, N.S., et al.
Veröffentlicht: (2012) -
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A₂+A₁)⁽¹⁾
von: Nakazono, N.
Veröffentlicht: (2010) -
Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾
von: Nakazono, N.
Veröffentlicht: (2016) -
Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations
von: Yamakawa, D.
Veröffentlicht: (2010)