Integrability of Discrete Equations Modulo a Prime
We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion...
Saved in:
Date: | 2013 |
---|---|
Main Author: | Kanki, M. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2013
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/149351 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Integrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Discrete Integrable Equations over Finite Fields
by: Kanki, M., et al.
Published: (2012) -
The Beltrami equations and prime ends
by: V. Y. Gutlyanskii, et al.
Published: (2015) -
The Beltrami equations and prime ends
by: Gutlyanskii, V.Y., et al.
Published: (2015) -
Modulo codes with summation in concurrent error detection systems. I. ability to detect errors by modulo codes in data vectors
by: V. V. Sapozhnikov, et al.
Published: (2016) -
Integrable Discrete Equations Derived by Similarity Reduction of the Extended Discrete KP Hierarchy
by: Svinin, A.K.
Published: (2006)