Regular pairings of functors and weak (co)monads

For functors L : A → B and R : B → A between any categories A and B, a pairing is defined by maps, natural in A ∈ A and B ∈ B, MorB(L(A), B) ↔ MorA(A, R(B)). (L, R) is an adjoint pair provided α (or β) is a bijection. In this case the composition RL defines a monad on the category A, LR defines a...

Full description

Saved in:
Bibliographic Details
Date:2013
Main Author: Wisbauer, R.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2013
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/152258
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Regular pairings of functors and weak (co)monads / R. Wisbauer // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 127–154. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:For functors L : A → B and R : B → A between any categories A and B, a pairing is defined by maps, natural in A ∈ A and B ∈ B, MorB(L(A), B) ↔ MorA(A, R(B)). (L, R) is an adjoint pair provided α (or β) is a bijection. In this case the composition RL defines a monad on the category A, LR defines a comonad on the category B, and there is a well-known correspondence between monads (or comonads) and adjoint pairs of functors. For various applications it was observed that the conditions for a unit of a monad was too restrictive and weakening it still allowed for a useful generalised notion of a monad. This led to the introduction of weak monads and weak comonads and the definitions needed were made without referring to this kind of adjunction. The motivation for the present paper is to show that these notions can be naturally derived from pairings of functors (L, R, α, β) with α = α ⋅ β ⋅ α and β = β ⋅ α ⋅ β. Following closely the constructions known for monads (and unital modules) and comonads (and counital comodules), we show that any weak (co)monad on A gives rise to a regular pairing between A and the category of compatible (co)modules.