Generalised triangle groups of type (3, q, 2)
If G is a group with a presentation of the form ⟨x, y|x³ = yq = W(x, y)² = 1⟩, then either G is virtually soluble or G contains a free subgroup of rank 2. This provides additional evidence in favour of a conjecture of Rosenberger.
Saved in:
Date: | 2013 |
---|---|
Main Author: | Howie, J. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2013
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/152259 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Generalised triangle groups of type (3, q, 2) / J. Howie // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 1–18. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Generalised triangle groups of type \((3,q,2)\)
by: Howie, James
Published: (2018) -
Generalised triangle groups of type
by: J. Howie
Published: (2013) -
The Tits alternative for generalized triangle groups of type (3,4,2)
by: Howie, J., et al.
Published: (2008) -
The Tits alternative for generalized triangle groups of type \((3,4,2)\)
by: Howie, James, et al.
Published: (2018) -
On the Tits alternative for some generalized triangle groups
by: Beniash-Kryvets, V., et al.
Published: (2004)