Weighted zero-sum problems over C₃ʳ
Let Cn be the cyclic group of order n and set sA(Crn) as the smallest integer ℓ such that every sequence S in Cʳn of length at least ℓ has an A-zero-sum subsequence of length equal to exp(Cʳn), for A = {−1, 1}. In this paper, among other things, we give estimates for sA(C₃ʳ), and prove that sA(C₃³)...
Saved in:
Date: | 2013 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2013
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/152283 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Weighted zero-sum problems over C₃ʳ / H. Godinho, A. Lemos, D. Marques // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 201–212. — Бібліогр.: 13 назв. — англ. |