On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field

In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field k: ker ˆφ(k) × coker(φ(k)) ⟶ k∗, and proved its perfectness over finite field. We prove perfectness of the Tate pairing associate...

Full description

Saved in:
Bibliographic Details
Date:2013
Main Author: Nesteruk, V.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2013
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/152312
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field / V. Nesteruk // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 103–106. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field k: ker ˆφ(k) × coker(φ(k)) ⟶ k∗, and proved its perfectness over finite field. We prove perfectness of the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field, with help of the method, used by P. Bruin in the case of finite ground field [1].