Ideals in (Z⁺, ≤D)
A convolution is a mapping C of the set Z⁺ of positive integers into the set P(Z⁺) of all subsets of Z⁺ such that every member of C(n) is a divisor of n. If for any n, D(n) is the set of all positive divisors of n, then D is called the Dirichlet's convolution. It is well known that Z⁺ has the s...
Saved in:
Date: | 2013 |
---|---|
Main Author: | Sagi, S. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2013
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/152313 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Ideals in (Z⁺, ≤D) / S. Sagi // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 107–115. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Ideals in (Z+,≤D)
by: S. Sagi
Published: (2013) -
Ideals in \((\mathcal{Z}^{+},\leq_{D})\)
by: Sagi, Sankar
Published: (2018) -
Ethnographic research by Z. D. Chodakowski
by: Yu. Maslianka
Published: (2013) -
Ideal evolution and evolution of ideality
by: A. N. Mikheev
Published: (2020) -
Энергетика переходов В – Z- и Z–клубок в водных растворах поли(dG-dC)
by: Мревлишвили, Г.М., et al.
Published: (1990)