Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3
We prove that there exist nonstandard K-linear triangulated categories with finitely many indecomposable objects and Calabi-Yau dimension one over an arbitrary algebraically closed field K of characteristic 3, using deformed preprojective algebras of generalized Dynkin type.
Saved in:
Date: | 2007 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2007
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/152362 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3 / J. Bialkowski, A. Skowronski // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 27–37. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152362 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1523622019-06-11T01:25:10Z Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3 Bialkowski, J. Skowronski, A. We prove that there exist nonstandard K-linear triangulated categories with finitely many indecomposable objects and Calabi-Yau dimension one over an arbitrary algebraically closed field K of characteristic 3, using deformed preprojective algebras of generalized Dynkin type. 2007 Article Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3 / J. Bialkowski, A. Skowronski // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 27–37. — Бібліогр.: 14 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:16D50, 16G60, 18G10. http://dspace.nbuv.gov.ua/handle/123456789/152362 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We prove that there exist nonstandard K-linear triangulated categories with finitely many indecomposable objects and Calabi-Yau dimension one over an arbitrary algebraically closed field K of characteristic 3, using deformed preprojective algebras of generalized Dynkin type. |
format |
Article |
author |
Bialkowski, J. Skowronski, A. |
spellingShingle |
Bialkowski, J. Skowronski, A. Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3 Algebra and Discrete Mathematics |
author_facet |
Bialkowski, J. Skowronski, A. |
author_sort |
Bialkowski, J. |
title |
Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3 |
title_short |
Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3 |
title_full |
Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3 |
title_fullStr |
Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3 |
title_full_unstemmed |
Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3 |
title_sort |
nonstandard additively finite triangulated categories of calabi-yau dimension one in characteristic 3 |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152362 |
citation_txt |
Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3 / J. Bialkowski, A. Skowronski // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 27–37. — Бібліогр.: 14 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT bialkowskij nonstandardadditivelyfinitetriangulatedcategoriesofcalabiyaudimensiononeincharacteristic3 AT skowronskia nonstandardadditivelyfinitetriangulatedcategoriesofcalabiyaudimensiononeincharacteristic3 |
first_indexed |
2025-07-13T02:54:55Z |
last_indexed |
2025-07-13T02:54:55Z |
_version_ |
1837498681430900736 |
fulltext |
Jo
u
rn
al
A
lg
eb
ra
D
is
cr
et
e
M
at
h
.
Algebra and Discrete Mathematics RESEARCH ARTICLE
Number 3. (2007). pp. 27 – 37
c© Journal “Algebra and Discrete Mathematics”
Nonstandard additively finite triangulated
categories of Calabi-Yau dimension one in
characteristic 3
Jerzy Bia lkowski and Andrzej Skowroński
Communicated by D. Simson
Abstract. We prove that there exist nonstandard K-linear
triangulated categories with finitely many indecomposable objects
and Calabi-Yau dimension one over an arbitrary algebraically
closed field K of characteristic 3, using deformed preprojective al-
gebras of generalized Dynkin type.
Throughout the paper K denotes an algebraically closed field. By a
triangulated category we mean a small K-linear triangulated category T
with split idempotents and finite dimensional morphism spaces. Recall
that a triangulated category T admits an autoequivalence T : T → T
(translation of T ) and a collection of morphisms X
u
−→ Y
v
−→ Z
w
−→ T X
(trangulation of T ) satisfying axioms (TR1) – (TR4) (see [9]). Impor-
tant examples of triangulated categories of algebraic nature are provided
by the derived categories Db(mod A) of bounded complexes of finite di-
mensional modules over finite dimensional K-algebras A and the stable
module categories mod Λ of finite dimensional selfinjective (Frobenius)
K-algebras Λ. For basic background on triangulated categories we refer
to [9] and [11].
Following [6], [12], a Serre functor of a triangulated category T is
an autoequivalence ν : T → T together with natural isomorphisms
D HomT (X, ?)
∼
−→ HomT (?, νX) for all objects X of T , where D is
Supported by the Polish Scientific Grant KBN No. 1 P03A 018 27.
2000 Mathematics Subject Classification: 16D50, 16G60, 18G10.
Key words and phrases: triangulated category, Calabi-Yau category, prepro-
jective algebra.
Jo
u
rn
al
A
lg
eb
ra
D
is
cr
et
e
M
at
h
.28 Additively finite triangulated categories
the duality HomK(−, K). A triangulated category T is called Calabi-
Yau if there exists an integer d ≥ 1 such that the iteration Td of the shift
functor T of T is a Serre functor of T . Then T is called d-Calabi-Yau
and the smallest d with this property is the Calabi-Yau dimension of T .
We refer to [7] for a complete description of Calabi-Yau stable module
categories of tame symmetric algebras and their Calabi-Yau dimensions.
Examples of triangulated categories of Calabi-Yau dimension 2 are pro-
vided by the stable module categories of the preprojective algebras of
generalized Dynkin type (see [3], [4], [8]).
In this paper, we are concerned with the structure of additively fi-
nite triangulated categories, that is, triangulated categories with finitely
many isomorpism classes of indecomposable objects. It is known that
every additively finite triangulated category has a Serre functor (see [1,
Theorem 1.1.1]). Fundamental examples of additively finite triangulated
categories are provided by the stable module categories modΛ of all self-
injective algebras of finite representation type (we refer to [13] for descrip-
tion of these categories). Moreover, the authors gave in [5] necessary and
sufficent conditions for these categories to be Calabi-Yau. In general, it
follows from [14] that if T is an additively finite triangulated K-category
then the Auslander-Reiten quiver ΓT of T is of the form Z∆/G, where
∆ is a Dynkin quiver of type An, Dn, E6, E7 or E8, and G is a weakly
admissible group of automorphisms of the translation quiver Z∆. More-
over, such a triangulated category T is called standard if T is K-linearly
equivalent to an orbit category Db(mod K∆)/H, where K∆ is the path
algebra of ∆ and H is an automorphism group of Db(modK∆). In [1],
C. Amiot proved that, for most groups G, the triangulated categories T
with ΓT
∼= Z∆/G are standard. Moreover, C. Amiot gave in [1] sufficient
conditions for the category proj Λ of finite dimensional projective mod-
ules over a selfinjective algebra Λ to be a triangulated category. Then,
invoking the main result of [4], C. Amiot proved in [1] that the class of 1-
Calabi-Yau additively finite triangulated categories T coincides with the
class of the categories projP f (∆) over deformed preprojective algebras
P f (∆) of generalized Dynkin types An, Dn, Ln, E6, E7, E8, described
bellow. This allowed to construct nonstandard 1-Calabi-Yau additively
finite triangulated categories over an arbitrary algebraically closed field
K of characteristic 2.
The main aim of this paper is to show existence of nonstandard 1-
Calabi-Yau additively finite triangulated categories over an arbitrary al-
gebraically closed field K of characteristic 3.
We also note that the nonstandard stable module categories of self-
injective algebras of finite type there exist only in characteristic 2 (see
[13]).
Jo
u
rn
al
A
lg
eb
ra
D
is
cr
et
e
M
at
h
.J. Bia lkowski, A. Skowroński 29
We recall now the deformed preprojective algebras of generalized
Dynkin type introduced in [4].
Let ∆ be a generalized Dynkin graph of type An(n ≥ 1), Dn(n ≥ 4),
En(n = 6, 7, 8) or Ln(n ≥ 1). Let Q∆ be the following associated quiver:
∆ = An :
(n ≥ 1)
0
a0 //
1
ā0
oo
a1 //
2
ā1
oo ... n − 2
an−2 // n − 1
ān−2
oo
∆ = Dn :
(n ≥ 4)
0
a0
��=
==
==
==
2
ā0
^^=======
ā1����
��
��
�
a2 //
3
ā2
oo ... n − 2
an−2 // n − 1
ān−2
oo
1
a1
@@�������
∆ = En :
(n = 6, 7, 8)
0
a0
��
1
a1 //
2
ā1
oo
a2 //
3
ā2
oo
a3 //
ā0
OO
4
ā3
oo ... n − 2
an−2 // n − 1
ān−2
oo
∆ = Ln :
(n ≥ 1)
0@ABGFEε=ε̄
�� a0 //
1
ā0
oo
a1 //
2
ā1
oo ... n − 2
an−2 // n − 1
ān−2
oo .
The preprojective algebra P (∆) associated to the graph ∆ is the
bound quiver algebra KQ∆/I∆, where KQ∆ is the path algebra of Q∆
and I∆ is the ideal in KQ∆ generated by the relations of the form
∑
a,sa=i
aā, i vertices of Q∆,
where sa denotes the source of an arrow a of Q∆. The preprojective al-
gebra P (∆) is a finite dimensional selfinjective algebra and its Nakayama
permutation is identity for ∆ = A1, D2n, E7, E8 and Ln, and of order 2 in
all other cases. Further, consider the associated algebra R(∆) as follows
R(An) = K;
R(Dn) = K〈x, y〉/(x2, y2, (x + y)n−2);
R(En) = K〈x, y〉/(x2, y3, (x + y)n−3);
R(Ln) = K[x]/(x2n).
Moreover, choose the exceptional vertex of the quiver Q∆ of P (∆) as
follows
0, for ∆ = An or Ln;
2, for ∆ = Dn;
3, for ∆ = En.
Jo
u
rn
al
A
lg
eb
ra
D
is
cr
et
e
M
at
h
.30 Additively finite triangulated categories
We note that if e is the idempotent of P (∆) corresponding to the ex-
ceptional vertex then R(∆) is isomorphic to eP (∆)e, and hence is local,
finite dimensional and selfinjective. Let f be an element of the square
rad2 R(∆) of the Jacobson radical of R(∆). Then the deformed prepro-
jective algebra P f (∆) of generalized Dynkin type ∆ is the bound quiver
algebra KQ∆/If
∆, where If
∆ is the ideal in the path algebra KQ∆ of Q∆
generated by the relations of the form
∑
a,sa=i
aā, for each nonexceptional vertex i of Q∆,
and
a0ā0, for ∆ = An;
ā0a0 + ā1a1 + a2ā2 + f(ā0a0, ā1a1), (ā0a0 + ā1a1)
n−2, for ∆ = Dn;
ā0a0 + ā2a2 + a3ā3 + f(ā0a0, ā2a2), (ā0a0 + ā2a2)
n−3, for ∆ = En;
ε2 + a0ā0 + εf(ε), ε2n, for ∆ = Ln.
Therefore, P f (∆) is obtained from P (∆) by deforming the relation at
the exceptional vertex of Q∆, and P f (∆) = P (∆) if f = 0. Moreover,
P f (∆) is a selfinjective algebra with dimK P f (∆) = dimK P (∆) and the
Cartan matrices of P f (∆) and P (∆) coincide.
It is shown in [4, Theorem 1.3] that, for an algebraically closed field
K of characteristic 2 and a generalized Dynkin graph ∆ other than An
and L1, there exists a deformed preprojective algebra P f (∆) over K
which is not isomorphic to the preprojective algebra P (∆). In such a
case, projP f (∆) is a nonstandard 1-Calabi-Yau additively finite triangu-
lar category (see [1, Theorem 9.3.3]).
The following theorem is the main result of the paper.
Theorem. Let K be an algebraically closed field of characteristic 3, ∆ a
Dynkin graph En(n = 6, 7, 8) and f = y2x + (x2, y3, (x + y)n−3) ∈ R(∆).
Then
(i) P f (∆) is not isomorphic to P (∆).
(ii) projP f (∆) is a nonstandard 1-Calabi-Yau additively finite triangu-
lated category.
Proof. (i) Let K be an algebraically closed field of characteristic 3, ∆ a
Dynkin graph En(n = 6, 7, 8) and f = y2x + (x2, y3, (x + y)n−3) ∈ R(∆).
We will show that P f (∆) is not isomorphic to P (∆).
Jo
u
rn
al
A
lg
eb
ra
D
is
cr
et
e
M
at
h
.J. Bia lkowski, A. Skowroński 31
Suppose that ϕ : P f (∆) → P (∆) is an algebra isomorphism. Then ϕ
is determined by the elements of the form
ϕ(a0) = α
(0)
0 a0 + α
(0)
0 α
(0)
1 a0ā2a2 + α
(0)
0 α
(0)
2 a0ā2a2ā0a0+
+α
(0)
0 α
(0)
3 a0ā2a2ā2a2 + . . .
ϕ(ā0) = ᾱ
(0)
0 ā0 + ᾱ
(0)
0 ᾱ
(0)
1 ā2a2ā0 + ᾱ
(0)
0 ᾱ
(0)
2 ā0a0ā2a2ā0+
+ᾱ
(0)
0 ᾱ
(0)
3 ā2a2ā2a2ā0 + . . .
ϕ(a1) = α
(1)
0 a1 + α
(1)
0 α
(1)
1 a1a2ā0a0ā2 + . . .
ϕ(ā1) = ᾱ
(1)
0 ā1 + ᾱ
(1)
0 ᾱ
(1)
1 a2ā0a0ā2ā1 + . . .
ϕ(a2) = α
(2)
0 a2 + α
(2)
0 α
(2)
1 a2ā0a0 + α
(2)
0 α
(2)
2 a2ā2a2+
+α
(2)
0 α
(2)
3 a2ā0a0ā2a2 + α
(2)
0 α
(2)
4 a2ā2a2ā0a0 + . . .
ϕ(ā2) = ᾱ
(2)
0 ā2 + ᾱ
(2)
0 ᾱ
(2)
1 ā0a0ā2 + ᾱ
(2)
0 ᾱ
(2)
2 ā2a2ā2+
+ᾱ
(2)
0 ᾱ
(2)
3 ā0a0ā2a2ā2 + ᾱ
(2)
0 ᾱ
(2)
4 ā2a2ā0a0ā2 + . . .
ϕ(a3) = α
(3)
0 a3 + α
(3)
0 α
(3)
1 ā0a0a3 + α
(3)
0 α
(3)
2 ā2a2a3+
+α
(3)
0 α
(3)
3 ā0a0ā2a2a3 + α
(3)
0 α
(3)
4 ā2a2ā0a0a3+
+α
(3)
0 α
(3)
5 ā2a2ā2a2a3 + . . .
ϕ(ā3) = ᾱ
(3)
0 ā3 + ᾱ
(3)
0 ᾱ
(3)
1 ā3ā0a0 + ᾱ
(3)
0 ᾱ
(3)
2 ā3ā2a2+
+ᾱ
(3)
0 ᾱ
(3)
3 ā3ā0a0ā2a2 + ᾱ
(3)
0 ᾱ
(3)
4 ā3ā2a2ā0a0+
+ᾱ
(3)
0 ᾱ
(3)
5 ā3ā2a2ā2a2 + . . .
ϕ(a4) = α
(4)
0 a4 + α
(4)
0 α
(4)
1 ā3a3a4 + α
(4)
0 α
(4)
2 ā3ā0a0a3a4+
+α
(4)
0 α
(4)
3 ā3ā2a2a3a4 + . . .
ϕ(ā4) = ᾱ
(4)
0 ā4 + ᾱ
(4)
0 ᾱ
(4)
1 ā4ā3a3 + ᾱ
(4)
0 ᾱ
(4)
2 ā4ā3ā0a0a3+
+ᾱ
(4)
0 ᾱ
(4)
3 ā4ā3ā2a2a3 + . . . ,
for n = 6, 7, 8,
ϕ(a5) = α
(5)
0 a5 + α
(5)
0 α
(5)
1 ā4a4a5 + . . .
ϕ(ā5) = ᾱ
(5)
0 ā5 + ᾱ
(5)
0 ᾱ
(5)
1 ā5ā4a4 + . . . ,
for n = 7, 8, and
ϕ(a6) = α
(6)
0 a6 + . . .
ϕ(ā6) = ᾱ
(6)
0 ā6 + . . . ,
for n = 8, for some parameters α
(l)
i , ᾱ
(l)
i ∈ K, with α
(l)
0 , ᾱ
(l)
0 non-zero,
for all l ∈ {0, 1, . . . , n}, α
(3)
5 = ᾱ
(3)
5 = α
(4)
1 = ᾱ
(4)
1 = α
(4)
3 = ᾱ
(4)
3 = 0 for
n = 6, and α
(4)
3 = ᾱ
(4)
3 = α
(5)
1 = ᾱ
(5)
1 = 0 for n = 7. Denote α = α
(0)
0 ᾱ
(0)
0 .
Note that α
(i)
i ᾱ
(i)
i = α 6= 0, for all i ∈ {0, 1, . . . , n}.
Jo
u
rn
al
A
lg
eb
ra
D
is
cr
et
e
M
at
h
.32 Additively finite triangulated categories
Invoking the relation at the vertex 0, we obtain
0 = α−2ϕ (a0ā0)
= a0ā0 +
(
α
(0)
1 + ᾱ
(0)
1
)
a0ā2a2ā0+
+
(
α
(0)
1 ᾱ
(0)
1 + α
(0)
3 + ᾱ
(0)
3
)
a0ā2a2ā2a2ā0 + . . . ,
and thus α
(0)
1 + ᾱ
(0)
1 = 0 = α
(0)
1 ᾱ
(0)
1 + α
(0)
3 + ᾱ
(0)
3 . Similarly, using the
relation at the vertex 1, we obtain
0 = α−2ϕ (a1ā1) = a1ā1 +
(
α
(1)
1 + ᾱ
(1)
1
)
a1a2ā0a0ā2ā1 + . . . ,
and thus α
(1)
1 + ᾱ
(1)
1 = 0. Further, invoking the relation at the vertex 2,
we obtain
0 = α−2ϕ (ā1a1 + a2ā2)
= ā1a1 − ᾱ
(1)
1 a2ā0a0ā2a2ā2 − α
(1)
1 a2ā2a2ā0a0ā2+
+a2ā2 +
(
α
(2)
1 + ᾱ
(2)
1
)
a2ā0a0ā2+
+
(
α
(2)
3 + ᾱ
(2)
3 + α
(2)
1 ᾱ
(2)
2
)
a2ā0a0ā2a2ā2+
+
(
α
(2)
4 + ᾱ
(2)
4 + α
(2)
2 ᾱ
(2)
1
)
a2ā2a2ā0a0ā2 + . . . ,
hence α
(2)
1 + ᾱ
(2)
1 = α
(2)
3 + ᾱ
(2)
3 +α
(2)
1 ᾱ
(2)
2 −α
(1)
1 = α
(2)
4 + ᾱ
(2)
4 +α
(2)
2 ᾱ
(2)
1 −
ᾱ
(1)
1 = 0 (note that a2ā2a2ā2 = ā1a1ā1a1 = 0). Applying now α
(1)
1 +
ᾱ
(1)
1 = 0 we obtain the equality
α
(2)
3 + ᾱ
(2)
3 + α
(2)
1 ᾱ
(2)
2 + α
(2)
4 + ᾱ
(2)
4 + α
(2)
2 ᾱ
(2)
1 = 0.
Assume that n = 6. Using the relation at the vertex 5, we obtain
0 = α−2ϕ (ā4a4) = ā4a4 +
(
α
(4)
2 + ᾱ
(4)
2
)
ā4ā3ā0a0a3a4 + . . . ,
and hence α
(4)
2 + ᾱ
(4)
2 = 0. Similarly, using the relation at the vertex 4,
we obtain
0 = α−2ϕ (ā3a3 + a4ā4)
= ā3a3 +
(
α
(3)
1 + ᾱ
(3)
1 − α
(3)
2 − ᾱ
(3)
2
)
ā3ā0a0a3
+
(
α
(3)
3 + ᾱ
(3)
3 + α
(3)
2 ᾱ
(3)
1 − α
(3)
2 ᾱ
(3)
2
)
ā3ā0a0ā2a2a3
+
(
α
(3)
4 + ᾱ
(3)
4 + α
(3)
1 ᾱ
(3)
2 − α
(3)
2 ᾱ
(3)
2
)
ā3ā2a2ā0a0a3
+a4ā4 + α
(4)
2 ā3ā0a0ā2a2a3 + ᾱ
(4)
2 ā3ā2a2ā0a0a3 + . . .
Jo
u
rn
al
A
lg
eb
ra
D
is
cr
et
e
M
at
h
.J. Bia lkowski, A. Skowroński 33
Note that we have ā3a3ā3a3 = ā4a4 = 0. Hence
α
(3)
1 + ᾱ
(3)
1 − α
(3)
2 − ᾱ
(3)
2 = α
(3)
3 + ᾱ
(3)
3 + α
(3)
2 ᾱ
(3)
1 − α
(3)
2 ᾱ
(3)
2 + α
(4)
2
= α
(3)
4 + ᾱ
(3)
4 + α
(3)
1 ᾱ
(3)
2 − α
(3)
2 ᾱ
(3)
2 + ᾱ
(4)
2 = 0.
Applying α
(4)
2 + ᾱ
(4)
2 = 0 to the above equations we obtain
α
(3)
3 + ᾱ
(3)
3 + α
(3)
2 ᾱ
(3)
1 + α
(3)
4 + ᾱ
(3)
4 + α
(3)
1 ᾱ
(3)
2 + α
(3)
2 ᾱ
(3)
2 = 0
(note that the calculations are in a field K of characteristic 3).
Now assume that n ∈ {7, 6}. Using the relation at the vertex 5, we
obtain
0 = α−2ϕ (ā4a4 + a5ā5)
= ā4a4 +
(
α
(4)
1 + ᾱ
(4)
1
)
ā4ā3a3a4
+
(
α
(4)
2 + ᾱ
(4)
2 − α
(4)
3 − ᾱ
(4)
3
)
ā4ā3ā0a0a3a4
+a5ā5 +
(
α
(5)
1 + ᾱ
(5)
1
)
ā4ā3a3a4 + . . .
= ā4a4 + a5ā5 +
(
α
(4)
1 + ᾱ
(4)
1 + α
(5)
1 + ᾱ
(5)
1
)
ā4ā3a3a4
+
(
α
(4)
2 + ᾱ
(4)
2 − α
(4)
3 − ᾱ
(4)
3
)
ā4ā3ā0a0a3a4 + . . . ,
and hence
α
(4)
1 + ᾱ
(4)
1 + α
(5)
1 + ᾱ
(5)
1 = 0 = α
(4)
2 + ᾱ
(4)
2 − α
(4)
3 − ᾱ
(4)
3
(for n = 7, we have α
(4)
1 + ᾱ
(4)
1 = α
(4)
2 + ᾱ
(4)
2 = 0).
Assume that n = 7. Using the relation at the vertex 4, we obtain
0 = α−2ϕ (ā3a3 + a4ā4)
= ā3a3 +
(
α
(3)
1 + ᾱ
(3)
1
)
ā3ā0a0a3 +
(
α
(3)
2 + ᾱ
(3)
2
)
ā3ā2a2a3
+
(
α
(3)
3 + ᾱ
(3)
3 + α
(3)
2 ᾱ
(3)
1 − α
(3)
2 ᾱ
(3)
2 − α
(3)
5 − ᾱ
(3)
5
)
ā3ā0a0ā2a2a3
+
(
α
(3)
4 + ᾱ
(3)
4 + α
(3)
1 ᾱ
(3)
2 − α
(3)
2 ᾱ
(3)
2 − α
(3)
5 − ᾱ
(3)
5
)
ā3ā2a2ā0a0a3
+a4ā4 +
(
α
(4)
1 + ᾱ
(4)
1
)
ā3ā0a0a3 +
(
α
(4)
1 + ᾱ
(4)
1
)
ā3ā2a2a3
+α
(4)
2 ā3ā0a0ā2a2a3 + ᾱ
(4)
2 ā3ā2a2ā0a0a3 + . . .
Note that we have ā3a3ā3a3ā3a3 = ā4a4ā4a4 = 0. Hence
α
(3)
1 + ᾱ
(3)
1 + α
(4)
1 + ᾱ
(4)
1 = 0,
α
(3)
2 + ᾱ
(3)
2 + α
(4)
1 + ᾱ
(4)
1 = 0,
α
(3)
3 + ᾱ
(3)
3 + α
(3)
2 ᾱ
(3)
1 − α
(3)
2 ᾱ
(3)
2 − α
(3)
5 − ᾱ
(3)
5 + α
(4)
2 = 0,
α
(3)
4 + ᾱ
(3)
4 + α
(3)
1 ᾱ
(3)
2 − α
(3)
2 ᾱ
(3)
2 − α
(3)
5 − ᾱ
(3)
5 + ᾱ
(4)
2 = 0.
Jo
u
rn
al
A
lg
eb
ra
D
is
cr
et
e
M
at
h
.34 Additively finite triangulated categories
Summing up the last two equalities and applying the equality
α
(4)
2 + ᾱ
(4)
2 = 0 we obtain
α
(3)
3 + ᾱ
(3)
3 + α
(3)
2 ᾱ
(3)
1 + α
(3)
4 + ᾱ
(3)
4 + α
(3)
1 ᾱ
(3)
2 + α
(3)
2 ᾱ
(3)
2 + α
(3)
5 + ᾱ
(3)
5 = 0
(again note that the calculations are in a field K of characteristic 3).
Assume that n = 8. Applying the relation at the vertex 4, we obtain
0 = α−2ϕ (ā3a3 + a4ā4)
= ā3a3 +
(
α
(3)
1 + ᾱ
(3)
1
)
ā3ā0a0a3 +
(
α
(3)
2 + ᾱ
(3)
2
)
ā3ā2a2a3
+
(
α
(3)
3 + ᾱ
(3)
3 + α
(3)
2 ᾱ
(3)
1
)
ā3ā0a0ā2a2a3
+
(
α
(3)
4 + ᾱ
(3)
4 + α
(3)
1 ᾱ
(3)
2
)
ā3ā2a2ā0a0a3
+
(
α
(3)
2 ᾱ
(3)
2 + α
(3)
5 + ᾱ
(3)
5
)
ā3ā2a2ā2a2a3
+a4ā4 +
(
α
(4)
1 + ᾱ
(4)
1
)
ā3ā0a0a3 +
(
α
(4)
1 + ᾱ
(4)
1
)
ā3ā2a2a3
+
(
α
(4)
2 + α
(4)
3 − α
(4)
1 ᾱ
(4)
1
)
ā3ā0a0ā2a2a3
+
(
ᾱ
(4)
2 + ᾱ
(4)
3 − α
(4)
1 ᾱ
(4)
1
)
ā3ā2a2ā0a0a3
+
(
α
(4)
3 + ᾱ
(4)
3 − α
(4)
1 ᾱ
(4)
1
)
ā3ā2a2ā2a2a3 + . . .
Note that we have ā3a3ā3a3ā3a3 = ā4a4ā4a4 = 0. Hence
α
(3)
1 + ᾱ
(3)
1 + α
(4)
1 + ᾱ
(4)
1 = 0,
α
(3)
2 + ᾱ
(3)
2 + α
(4)
1 + ᾱ
(4)
1 = 0,
α
(3)
3 + ᾱ
(3)
3 + α
(3)
2 ᾱ
(3)
1 + α
(4)
2 + ᾱ
(4)
3 − α
(4)
1 ᾱ
(4)
1 = 0,
α
(3)
4 + ᾱ
(3)
4 + α
(3)
1 ᾱ
(3)
2 + ᾱ
(4)
2 + α
(4)
3 − α
(4)
1 ᾱ
(4)
1 = 0,
α
(3)
2 ᾱ
(3)
2 + α
(3)
5 + ᾱ
(3)
5 + α
(4)
3 + ᾱ
(4)
3 − α
(4)
1 ᾱ
(4)
1 = 0.
Summing up the last three equalities and applying the equality
α
(4)
2 + ᾱ
(4)
2 − α
(4)
3 − ᾱ
(4)
3 = 0, we obtain
α
(3)
3 + ᾱ
(3)
3 + α
(3)
2 ᾱ
(3)
1 + α
(3)
4 + ᾱ
(3)
4 + α
(3)
1 ᾱ
(3)
2 + α
(3)
2 ᾱ
(3)
2 + α
(3)
5 + ᾱ
(3)
5 = 0.
Assume that n = {6, 7, 8}. Applying the relation at the vertex 3, we
obtain
0 = α−2ϕ (ā0a0 + ā2a2 + a3ā3 + ā2a2ā2a2ā0a0)
= ā0a0 + α
(0)
1 ā0a0ā2a2 + ᾱ
(0)
1 ā2a2ā0a0 + α
(0)
1 ᾱ
(0)
1 ā2a2ā0a0ā2a2
+
(
α
(0)
2 + ᾱ
(0)
2
)
ā0a0ā2a2ā0a0
+ᾱ
(0)
3 ā2a2ā2a2ā0a0 + α
(0)
3 ā0a0ā2a2ā2a2
+ā2a2 + ᾱ
(2)
1 ā0a0ā2a2 + α
(2)
1 ā2a2ā0a0 +
(
α
(2)
2 + ᾱ
(2)
2
)
ā2a2ā2a2
+
(
α
(2)
1 ᾱ
(2)
2 + α
(2)
4
)
ā2a2ā2a2ā0a0
+
(
α
(2)
2 ᾱ
(2)
1 + ᾱ
(2)
3
)
ā0a0ā2a2ā2a2
Jo
u
rn
al
A
lg
eb
ra
D
is
cr
et
e
M
at
h
.J. Bia lkowski, A. Skowroński 35
+
(
α
(2)
3 + ᾱ
(2)
4
)
ā2a2ā0a0ā2a2
+α
(2)
1 ᾱ
(2)
1 ā0a0ā2a2ā0a0
+a3ā3 −
(
α
(3)
1 + ᾱ
(3)
2
)
ā0a0ā2a2 −
(
ᾱ
(3)
1 + α
(3)
2
)
ā2a2ā0a0
−
(
α
(3)
2 + ᾱ
(3)
2
)
ā2a2ā2a2
+
(
−ᾱ
(3)
4 − α
(3)
5 − α
(3)
2 ᾱ
(3)
1
)
ā2a2ā2a2ā0a0
+
(
−α
(3)
3 − ᾱ
(3)
5 − α
(3)
1 ᾱ
(3)
2
)
ā0a0ā2a2ā2a2
+
(
−α
(3)
4 − ᾱ
(3)
3 − α
(3)
2 ᾱ
(3)
2
)
ā2a2ā0a0ā2a2
+
(
−α
(3)
1 ᾱ
(3)
1 − α
(3)
3 − ᾱ
(3)
4
)
ā0a0ā2a2ā0a0
+α4ā2a2ā2a2ā0a0 + . . .
= ā0a0 + ā2a2 + a3ā3
+
(
α
(0)
1 + ᾱ
(2)
1 − α
(3)
1 − ᾱ
(3)
2
)
ā0a0ā2a2
+
(
ᾱ
(0)
1 + α
(2)
1 − ᾱ
(3)
1 − α
(3)
2
)
ā0a0ā2a2
+
(
α
(2)
2 + ᾱ
(2)
2 − α
(3)
2 − ᾱ
(3)
2
)
ā2a2ā2a2
+
(
ᾱ
(0)
3 + α
(2)
1 ᾱ
(2)
2 + α
(2)
4 − ᾱ
(3)
4 − α
(3)
5 − α
(3)
2 ᾱ
(3)
1 + α4
)
ā2a2ā2a2ā0a0
+
(
α
(0)
3 + α
(2)
2 ᾱ
(2)
1 + ᾱ
(2)
3 − α
(3)
3 − ᾱ
(3)
5 − α
(3)
1 ᾱ
(3)
2
)
ā0a0ā2a2ā2a2
+
(
α
(0)
1 ᾱ
(0)
1 + α
(2)
3 + ᾱ
(2)
4 − α
(3)
4 − ᾱ
(3)
3 − α
(3)
2 ᾱ
(3)
2
)
ā2a2ā0a0ā2a2
+
(
α
(0)
2 + ᾱ
(0)
2 + α
(2)
1 ᾱ
(2)
1 − α
(3)
1 ᾱ
(3)
1 − α
(3)
3 − ᾱ
(3)
4
)
ā0a0ā2a2ā0a0
+ . . .
Note that ā2a2ā2a2ā0a0, ā0a0ā2a2ā2a2, ā2a2ā0a0ā2a2, ā0a0ā2a2ā0a0 are
linearly independent, for n = 7, 8, and
ā2a2ā2a2ā0a0 + ā0a0ā2a2ā2a2 + ā2a2ā0a0ā2a2 + ā0a0ā2a2ā0a0 = 0,
for n = 6. Denote β = α
(0)
2 + ᾱ
(0)
2 + α
(2)
1 ᾱ
(2)
1 − α
(3)
1 ᾱ
(3)
1 − α
(3)
3 − ᾱ
(3)
4 , for
n = 6, and β = 0, for n = 7, 8. Then we have
(
ᾱ
(0)
3 + α
(2)
1 ᾱ
(2)
2 + α
(2)
4 − ᾱ
(3)
4 − α
(3)
5 − α
(3)
2 ᾱ
(3)
1 + α4
)
− β = 0,
(
α
(0)
3 + α
(2)
2 ᾱ
(2)
1 + ᾱ
(2)
3 − α
(3)
3 − ᾱ
(3)
5 − α
(3)
1 ᾱ
(3)
2
)
− β = 0,
(
α
(0)
1 ᾱ
(0)
1 + α
(2)
3 + ᾱ
(2)
4 − α
(3)
4 − ᾱ
(3)
3 − α
(3)
2 ᾱ
(3)
2
)
− β = 0.
Jo
u
rn
al
A
lg
eb
ra
D
is
cr
et
e
M
at
h
.36 Additively finite triangulated categories
Summing up the above three equations we obtain
0 = α4 + 3β +
(
α
(0)
1 ᾱ
(0)
1 + α
(0)
3 + ᾱ
(0)
3
)
+
(
α
(2)
3 + ᾱ
(2)
3 + α
(2)
1 ᾱ
(2)
2 + α
(2)
4 + ᾱ
(2)
4 + α
(2)
2 ᾱ
(2)
1
)
−
(
α
(3)
3 + ᾱ
(3)
3 + α
(3)
2 ᾱ
(3)
1 + α
(3)
4 + ᾱ
(3)
4 + α
(3)
1 ᾱ
(3)
2 + α
(3)
2 ᾱ
(3)
2
+α
(3)
5 + ᾱ
(3)
5
)
= α4.
This is a contradiction, because α 6= 0. This shows that P f (∆) is not
isomorphic to P (∆).
(ii) It follows from (i) and [1, Corollary 9.3.2] that the categories
projP f (∆) and projP (∆) are not equivalent 1-Calabi-Yau categories
with the same Auslander-Reiten quiver Q∆. In particular, projP (∆)
is standard and projP f (∆) is nonstandard.
Remark. We would like to mention that is not clear if there exist non-
standard additively finite K-linear triangulated categories of Calabi-Yau
dimension one over algebraically closed fields K of characteristic different
from 2 and 3.
References
[1] C. Amiot, On the structure of triangulated categories with finitely many indecom-
posables, Preprint (2006), arXiv: math. CT/0612141.
[2] I. Assem, D. Simson and A. Skowroński, “Elements of the Representation Theory
of Associative Algebras 1: Techniques of Representation Theory”, London Math.
Soc. Student Texts, Vol. 65, Cambridge Univ. Press, 2006.
[3] M. Auslander and I. Reiten, D Tr-periodic modules and functors, In: Represen-
tation Theory of Algebras, CMS Conf. Proc. Vol. 18, Amer. Math. Soc., 1996,
pp. 39-50.
[4] J. Bia lkowski, K. Erdmann and A. Skowroński, Deformed preprojective algebras
of generalized Dynkin type, Trans. Amer. Math. Soc., 359, 2007, pp. 2625-2650.
[5] J. Bia lkowski and A. Skowroński, Calabi-Yau stable module categories of finite
type, Colloq. Math., 109 (2007), 257-269.
[6] A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and
reconstructions, Izv. Akad. Nauk SSSR Ser. Mat., 53, 1989, pp. 1183-1205.
[7] K. Erdmann and A. Skowroński, The stable Calabi-Yau dimension of tame sym-
metric algebras, J. Math. Soc. Japan, 58, 2006, pp. 97-128.
[8] K. Erdmann and N. Snashall, Preprojective algebras of Dynkin type, periodic-
ity and the second Hochschild cohomology, In: Algebras and Modules II, CMS
Conference Proceedings, Vol. 24, Amer. Math. Soc., Providence, RI, 1998, pp.
183-193.
[9] D. Happel, “Triangulated Categories in the Representation Theory of Finite Di-
mensional Algebras”, London Math. Soc. Lecture Note Series, Vol. 119, Cam-
bridge Univ. Press, 1988.
Jo
u
rn
al
A
lg
eb
ra
D
is
cr
et
e
M
at
h
.J. Bia lkowski, A. Skowroński 37
[10] B. Keller, On triangulated orbit categories, Documenta Math., 10, 2005, pp. 551-
581.
[11] A. Neeman, “Triangulated categories”, Annals of Mathematics Studies, Vol. 148,
Princeton University Press, Princeton, 2001.
[12] I. Reiten and M. van den Bergh, Noetherian hereditary abelian categories satisfy-
ing Serre duality , J. Amer. Math. Soc., 15, 2002, pp. 295-366.
[13] A. Skowroński, Selfinjective algebras: finite and tame type, In: Trends in Repre-
sentation Theory of Algebras and Related Topics, Contemp. Math., 406, 2006,
pp. 169-238.
[14] J. Xiao and B. Zhu, Locally finite triangulated categories, J. Algebra, 290, 2005,
pp. 473-490.
Contact information
J. Bia lkowski Faculty of Mathematics
and Computer Science,
Nicolaus Copernicus University,
Chopina 12/18, 87-100 Toruń, Poland
E-Mail: jb@mat.uni.torun.pl
A. Skowroński Faculty of Mathematics
and Computer Science,
Nicolaus Copernicus University,
Chopina 12/18, 87-100 Toruń, Poland
E-Mail: skowron@mat.uni.torun.pl
Received by the editors: 31.05.2007
and in final form 01.02.2008.
|