Symmetries of automata

For a given reachable automaton A, we prove that the (state-) endomorphism monoid End(A) divides its characteristic monoid M(A). Hence so does its (state-)automorphism group Aut(A), and, for finite A, Aut(A) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the pr...

Full description

Saved in:
Bibliographic Details
Date:2015
Main Authors: Egri-Nagy, A., Nehaniv, C.L.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2015
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/152786
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Symmetries of automata / A. Egri-Nagy, C.L. Nehaniv // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 48-57. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine