The Tits alternative for generalized triangle groups of type (3,4,2)
A generalized triangle group is a group that can be presented in the form G=⟨x,y |xp=yq=w(x,y)r=1⟩ where p,q,r≥2 and w(x,y) is a cyclically reduced word of length at least 2 in the free product Zp∗Zq=⟨x,y |xp=yq=1⟩. Rosenberger has conjectured that every generalized triangle group G satisfies the Ti...
Gespeichert in:
Datum: | 2008 |
---|---|
Hauptverfasser: | Howie, J., Williams, G. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2008
|
Schriftenreihe: | Algebra and Discrete Mathematics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/153357 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The Tits alternative for generalized triangle groups of type (3,4,2) / J. Howie, G. Williams // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 40–48. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
The Tits alternative for generalized triangle groups of type \((3,4,2)\)
von: Howie, James, et al.
Veröffentlicht: (2018) -
On the Tits alternative for some generalized triangle groups
von: Beniash-Kryvets, V., et al.
Veröffentlicht: (2004) -
On the Tits alternative for some generalized triangle groups
von: Beniash-Kryvets, Valery, et al.
Veröffentlicht: (2018) -
Generalised triangle groups of type (3, q, 2)
von: Howie, J.
Veröffentlicht: (2013) -
Generalised triangle groups of type \((3,q,2)\)
von: Howie, James
Veröffentlicht: (2018)