Algebra in superextensions of groups, I: zeros and commutativity

Given a group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We characterize right zeros of...

Full description

Saved in:
Bibliographic Details
Date:2008
Main Authors: Banakh, T.T., Gavrylkiv, V., Nykyforchyn, O.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2008
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/153373
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Algebra in superextensions of groups, I: zeros and commutativity / T.T. Banakh, V. Gavrylkiv, O. Nykyforchyn // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 1–29. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine