Сопряженные подпространства и инъекции банаховых пространств
Устанавливается связь между существованием в банаховом пространстве подпространств, изометричных (изоморфных) сопряженным, и существованием инъекций пространства с некоторыми специальными свойствами. Например, если пространство допускает неизоморфную инъекцию (в некоторое банахово пространство) таку...
Gespeichert in:
Datum: | 1987 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут математики НАН України
1987
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/154032 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Сопряженные подпространства и инъекции банаховых пространств / В.П. Фонф // Український математичний журнал. — 1987. — Т. 39, № 3. — С. 364-369. — Бібліогр.: 7 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Устанавливается связь между существованием в банаховом пространстве подпространств, изометричных (изоморфных) сопряженным, и существованием инъекций пространства с некоторыми специальными свойствами. Например, если пространство допускает неизоморфную инъекцию (в некоторое банахово пространство) такую, что образ всякого ограниченного замкнутого множества есть множество типа Об, то это пространство содержит бесконечномерное подпространство, изоморфное сопряженному к некоторому банахову пространству с базисом. Даны некоторые обобщения на несепарабельный случай известного результата Розенталя и Джонсона о насыщенности сепарабельного сопряженного пространства пространствами, изоморфными сепарабельным сопряженным. |
---|