A commutative Bezout PM* domain is an elementary divisor ring
We prove that any commutative Bezout PM∗ domain is an elementary divisor ring.
Saved in:
Date: | 2015 |
---|---|
Main Authors: | Zabavsky, B., Gatalevych, A. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2015
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/154247 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | A commutative Bezout PM* domain is an elementary divisor ring / B. Zabavsky, A. Gatalevych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 295–301. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
A commutative Bezout PM* domain is an elementary divisor ring
by: B. Zabavsky, et al.
Published: (2015) -
A criterion of elementary divisor domain for distributive domains
by: V. Bokhonko, et al.
Published: (2017) -
A criterion of elementary divisor domain for distributive domains
by: Bokhonko, V., et al.
Published: (2017) -
Comaximal factorization in a commutative Bezout ring
by: Zabavsky, B.V., et al.
Published: (2020) -
Comaximal factorization in a commutative Bezout ring
by: Zabavsky, B. V., et al.
Published: (2020)