On subgroups of saturated or totally bounded paratopological groups

A paratopological group G is saturated if the inverse U ⁻¹ of each non-empty set U ⊂ G has non-empty interior. It is shown that a [first-countable] paratopological group H is a closed subgroup of a saturated (totally bounded) [abelian] paratopological group if and only if H admits a continuous b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2003
Hauptverfasser: Banakh, T., Ravsky, S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2003
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/155719
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On subgroups of saturated or totally bounded paratopological groups / T. Banakh, S. Ravsky // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 4. — С. 1–20. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:A paratopological group G is saturated if the inverse U ⁻¹ of each non-empty set U ⊂ G has non-empty interior. It is shown that a [first-countable] paratopological group H is a closed subgroup of a saturated (totally bounded) [abelian] paratopological group if and only if H admits a continuous bijective homomorphism onto a (totally bounded) [abelian] topological group G [such that for each neighborhood U ⊂ H of the unit e there is a closed subset F ⊂ G with e ∈ h ⁻¹ (F) ⊂ U]. As an application we construct a paratopological group whose character exceeds its π-weight as well as the character of its group reflexion. Also we present several examples of (para)topological groups which are subgroups of totally bounded paratopological groups but fail to be subgroups of regular totally bounded paratopological groups.