Amply (weakly) Goldie-Rad-supplemented modules
Let R be a ring and M be a right R-module. We say a submodule S of M is a \textit{(weak) Goldie-Rad-supplement} of a submodule N in M, if M=N+S, (N∩S≤Rad(M)) N∩S≤Rad(S) and Nβ∗∗S, and M is called amply (weakly) Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements...
Saved in:
Date: | 2016 |
---|---|
Main Author: | Mutlu, F.T. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2016
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/155747 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Amply (weakly) Goldie-Rad-supplemented modules / F.T. Mutlu // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 94-101. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Amply (weakly) Goldie-Rad-supplemented modules
by: Takıl Mutlu, Figen
Published: (2016) -
Rad-supplements in injective modules
by: Buyukasik, E., et al.
Published: (2016) -
Rad-supplements in injective modules
by: Buyukasik, Engin, et al.
Published: (2016) -
Rad-supplements in injective modules
by: E. Buyukasık, et al.
Published: (2016) -
Principally Goldie*-lifting modules
by: A. T. Güroğlu, et al.
Published: (2018)