Finite groups admitting a dihedral group of automorphisms
Let D=⟨α,β⟩ be a dihedral group generated by the involutions α and β and let F=⟨αβ⟩. Suppose that D acts on a finite group G by automorphisms in such a way that CG(F)=1. In the present paper we prove that the nilpotent length of the group G is equal to the maximum of the nilpotent lengths of the sub...
Saved in:
Date: | 2017 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2017
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/156017 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Finite groups admitting a dihedral group of automorphisms / G. Ercan, İ.Ş. Güloğlu // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 223-229. — Бібліогр.: 17 назв. — англ. |