Bethe approach study of the mixed spin-1/2 and spin-5/2 Ising system in the presence of an applied magnetic field

The mixed spin-1/2 and spin-5/2 Ising model is investigated on the Bethe lattice in the presence of a magnetic field h via the recursion relations method. A ground-state phase diagram is constructed which may be needful to explore important regions of the temperature phase diagrams of a model. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Karimou, M., Yessoufou, R.A., Oke, T.D., Kpadonou, A., Hontinfinde, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2016
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/156199
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Bethe approach study of the mixed spin-1/2 and spin-5/2 Ising system in the presence of an applied magnetic field / M. Karimou, R.A. Yessoufou, T.D. Oke, A. Kpadonou, F. Hontinfinde // Condensed Matter Physics. — 2016. — Т. 19, № 3. — С. 33003: 1–15. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The mixed spin-1/2 and spin-5/2 Ising model is investigated on the Bethe lattice in the presence of a magnetic field h via the recursion relations method. A ground-state phase diagram is constructed which may be needful to explore important regions of the temperature phase diagrams of a model. The order-parameters, the corresponding response functions and internal energy are thoroughly investigated in order to typify the nature of the phase transition and to get the corresponding temperatures. So, in the absence of the magnetic field, the temperature phase diagrams are displayed in the case of an equal crystal-field on the (kBT /|J|, D/|J|) plane when q = 3, 4, 5 and 6. The model only exhibits the second-order phase transition for appropriate values of physical parameters of a model.