Correct classes of modules
For a ring R, call a class C of R-modules (pure-) mono-correct if for any M, N ∈ C the existence of (pure) monomorphisms M → N and N → M implies M ≃ N. Extending results and ideas of Rososhek from rings to modules, it is shown that, for an R-module M, the class σ[M] of all M-subgenerated modules...
Saved in:
Date: | 2004 |
---|---|
Main Author: | Wisbauer, R. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2004
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/156603 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Correct classes of modules / R. Wisbauer // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 4. — С. 106–118. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Correct classes of modules
by: Wisbauer, Robert
Published: (2018) -
On a class of dual Rickart modules
by: R. Tribak
Published: (2020) -
On a class of λ-modules
by: I. E. Wijayanti, et al.
Published: (2021) -
τ-complemented and τ-supplemented modules
by: Al-Takhman, K., et al.
Published: (2006) -
\(\tau\)-complemented and \(\tau\)-supplemented modules
by: Al-Takhman, Khaled, et al.
Published: (2018)