Uncountably many non-isomorphic nilpotent real n-Lie algebras
There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for n-Lie algebras. In particular, for n...
Saved in:
Date: | 2006 |
---|---|
Main Authors: | Stitzinger, E., Williams, M.P. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2006
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/157370 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Uncountably many non-isomorphic nilpotent real n-Lie algebras / E. Stitzinger, M.P. Williams // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 1. — С. 81–88. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras
by: Stitzinger, Ernest, et al.
Published: (2018) -
Frattini theory for N-Lie algebras
by: Michael Peretzian Williams
Published: (2009) -
Frattini theory for \(N\)-Lie algebras
by: Williams, Michael Peretzian
Published: (2018) -
On nilpotent Lie algebras of derivations of fraction fields
by: Petravchuk, A.P.
Published: (2016) -
On nilpotent Lie algebras of derivations of fraction fields
by: Petravchuk, Anatoliy P.
Published: (2016)