On minimal ω-composition non-H-formations
Let H be some class of groups. A formation F is called a minimal τ -closed ω-composition non-H-formation [1] if F * H but F1 ⊆ H for all proper τ -closed ω-composition subformations F₁ of F. In this paper we describe the minimal τ -closed ω-composition non-H-formations, where H is a 2-multiply lo...
Saved in:
Date: | 2006 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2006
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/157390 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On minimal ω-composition non-H-formations / L.I. Belous, V.M. Selkin // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 4. — С. 1–11. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | Let H be some class of groups. A formation F
is called a minimal τ -closed ω-composition non-H-formation [1] if
F * H but F1 ⊆ H for all proper τ -closed ω-composition subformations F₁ of F. In this paper we describe the minimal τ -closed
ω-composition non-H-formations, where H is a 2-multiply local formation and τ is a subgroup functor such that for any group G all
subgroups from τ (G) are subnormal in G. |
---|