On minimal ω-composition non-H-formations

Let H be some class of groups. A formation F is called a minimal τ -closed ω-composition non-H-formation [1] if F * H but F1 ⊆ H for all proper τ -closed ω-composition subformations F₁ of F. In this paper we describe the minimal τ -closed ω-composition non-H-formations, where H is a 2-multiply lo...

Full description

Saved in:
Bibliographic Details
Date:2006
Main Authors: Belous, L.I., Selkin, V.M.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2006
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/157390
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On minimal ω-composition non-H-formations / L.I. Belous, V.M. Selkin // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 4. — С. 1–11. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Let H be some class of groups. A formation F is called a minimal τ -closed ω-composition non-H-formation [1] if F * H but F1 ⊆ H for all proper τ -closed ω-composition subformations F₁ of F. In this paper we describe the minimal τ -closed ω-composition non-H-formations, where H is a 2-multiply local formation and τ is a subgroup functor such that for any group G all subgroups from τ (G) are subnormal in G.