Long-range order in linear ferromagnetic oscillator systems. Strong pair quadratic n-n potential

Long-range order is proved to exist for lattice linear oscillator systems with ferromagnetic potential energy containing a term with strong nearest-neighbor (n-n) quadratic pair potential. A contour bound and a generalized Peierls argument are used in the proof.

Saved in:
Bibliographic Details
Date:2004
Main Author: Skrypnik, W.I.
Format: Article
Language:English
Published: Інститут математики НАН України 2004
Series:Український математичний журнал
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/163777
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Long-range order in linear ferromagnetic oscillator systems. Strong pair quadratic n-n potential / W.I. Skrypnik // Український математичний журнал. — 2004. — Т. 56, № 6. — С. 810–817. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Long-range order is proved to exist for lattice linear oscillator systems with ferromagnetic potential energy containing a term with strong nearest-neighbor (n-n) quadratic pair potential. A contour bound and a generalized Peierls argument are used in the proof.