A Presentation of the Automorphism Group of the Two-Generator Free Metabelian and Nilpotent Group of Class c
We determine the structure of IA(G)/Inn(G) by giving a set of generators, and showing that IA(G)/Inn(G) is a free abelian group of rank (c − 2)(c + 3)/2. Here G = M₂, c = 〈 x, y〉, c ≥ 2, is the free metabelian nilpotent group of class c.
Saved in:
Date: | 2002 |
---|---|
Main Authors: | Gupta, C.K., Wan Lin |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2002
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/164057 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | A Presentation of the Automorphism Group of the Two-Generator Free Metabelian and Nilpotent Group of Class c / C.K. Gupta, Wan Lin // Український математичний журнал. — 2002. — Т. 54, № 6. — С. 771–779. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On 2-Symmetric Words in Nilpotent Groups
by: Gupta, C.K., et al.
Published: (2002) -
Normal automorphisms of the metabelian product of free abelian Lie algebras
by: Öğüşlü, N.Ş.
Published: (2020) -
Normal automorphisms of the metabelian product of free abelian Lie algebras
by: Öğüşlü, N. Ş.
Published: (2021) -
Low-dimensional nilpotent Leibniz algebras and their automorphism groups
by: Minaiev, Pavlo Ye., et al.
Published: (2024) -
Major subgroups of nilpotent-by-finite groups
by: Тоmкіnsоn, M.J.
Published: (1992)