Subharmonics of a Nonconvex Noncoercive Hamiltonian System

We study the problem of the existence of multiple periodic solutions of the Hamiltonian system Jx˙+u∇G(t,u(x))=e(t), where u is a linear mapping, G is a C¹-function, and e is a continuous function.

Saved in:
Bibliographic Details
Date:2003
Main Authors: Kallel, N., Timoumi, М.
Format: Article
Language:English
Published: Інститут математики НАН України 2003
Series:Український математичний журнал
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/164362
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Subharmonics of a Nonconvex Noncoercive Hamiltonian System / N. Kallel, М. Timoumi // Український математичний журнал. — 2003. — Т. 55, № 11. — С. 1459–1466. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We study the problem of the existence of multiple periodic solutions of the Hamiltonian system Jx˙+u∇G(t,u(x))=e(t), where u is a linear mapping, G is a C¹-function, and e is a continuous function.