Subharmonics of a Nonconvex Noncoercive Hamiltonian System
We study the problem of the existence of multiple periodic solutions of the Hamiltonian system Jx˙+u∇G(t,u(x))=e(t), where u is a linear mapping, G is a C¹-function, and e is a continuous function.
Saved in:
Date: | 2003 |
---|---|
Main Authors: | Kallel, N., Timoumi, М. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2003
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/164362 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Subharmonics of a Nonconvex Noncoercive Hamiltonian System / N. Kallel, М. Timoumi // Український математичний журнал. — 2003. — Т. 55, № 11. — С. 1459–1466. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On Some Noncoercive Variational Inequalities
by: Gallo, А., et al.
Published: (2001) -
On subharmonic extension and extension in the Hardy-Orlicz classes
by: Riihentaus, J, et al.
Published: (1993) -
Spectrum and States of the BCS Hamiltonian in a Finite Domain. III. BCS Hamiltonian with Mean-Field Interaction
by: Petrina, D.Ya.
Published: (2002) -
On the Lie algebra structures connected with Hamiltonian dynamical systems
by: Smirnov, R.G.
Published: (1997) -
Spectrum and states of the BCS Hamiltonian with sources
by: Petrina, D.Ya.
Published: (2008)