Fourier cosine and sine transforms and generalized Lipschitz classes in the uniform metric
For functions f ∈ L¹ (ℝ+) with cosine (sine) Fourier transforms f^c (f^s) in L¹ (ℝ), we give necessary and sufficient conditions in terms of f^c (f^s) for f to belong to generalized Lipschitz classes H^ω,m and h^ω,m Conditions for the uniform convergence of the Fourier integral and for the existence...
Saved in:
Date: | 2012 |
---|---|
Main Authors: | Volosivets, S.S., Golubov, B.I. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2012
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/164425 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Fourier cosine and sine transforms and generalized Lipschitz classes in the uniform metric / B.I. Golubov, S.S. Volosivets // Український математичний журнал. — 2012. — Т. 64, № 5. — С. 616-627. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On the polyconvolution for the Fourier cosine, Fourier sine, and Kontorovich–Lebedev integral transforms
by: Thao, N.X., et al.
Published: (2010) -
Eigenfunctions of the Cosine and Sine Transforms
by: Katsnelson, V.
Published: (2013) -
Eigenfunctions of the Cosine and Sine Transforms
by: V. Katsnelson
Published: (2013) -
Implementation of Multidigit Multiplication Basing on Discrete Cosine and Sine Transforms
by: A. M. Tereshchenko, et al.
Published: (2021) -
On the Fourier sine and Kontorovich–Lebedev generalized convolution transforms and applications
by: T. Tuan
Published: (2020)