The Stone–Čech Compactification of Groupoids
Let G be a discrete groupoid. Consider the Stone–Čech compactification βG of G. We extend the operation on the set of composable elements G (²) of G to the operation * on a subset (βG)(²) of βG×βG such that the triple (βG, (βG)(²), *) is a compact right topological semigroupoid.
Saved in:
Date: | 2015 |
---|---|
Main Author: | Behrouzi, F. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2015
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/165514 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | The Stone–Čech Compactification of Groupoids / F. Behrouzi // Український математичний журнал. — 2015. — Т. 67, № 4. — С. 456–466. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
The Stone–Čech Compactification of Groupoids
by: F. Behrouzi
Published: (2015) -
Algebra in the Stone-Čech compactification: applications to topologies on groups
by: Protasov, I.V.
Published: (2009) -
Algebra in the Stone-\(\check{C}\)ech compactification: applications to topologies on groups
by: Protasov, I. V.
Published: (2018) -
Toric Geometry and Calabi–Yau Compactifications
by: Kreuzer, M.
Published: (2010) -
Groupoid Actions on Fractafolds
by: Ionescu, M., et al.
Published: (2014)