On countable almost invariant partitions of g-spaces

For any σ -finite G-quasiinvariant measure μ given in a G-space, which is G-ergodic and possesses the Steinhaus property, it is shown that every nontrivial countable μ-almost G-invariant partition of the G-space has a μ-nonmeasurable member.

Saved in:
Bibliographic Details
Date:2014
Main Author: Kharazishvili, A.B.
Format: Article
Language:English
Published: Інститут математики НАН України 2014
Series:Український математичний журнал
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/166005
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On countable almost invariant partitions of g-spaces / A.B. Kharazishvili // Український математичний журнал. — 2014. — Т. 66, № 4. — С. 510–517. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:For any σ -finite G-quasiinvariant measure μ given in a G-space, which is G-ergodic and possesses the Steinhaus property, it is shown that every nontrivial countable μ-almost G-invariant partition of the G-space has a μ-nonmeasurable member.