On countable almost invariant partitions of g-spaces
For any σ -finite G-quasiinvariant measure μ given in a G-space, which is G-ergodic and possesses the Steinhaus property, it is shown that every nontrivial countable μ-almost G-invariant partition of the G-space has a μ-nonmeasurable member.
Saved in:
Date: | 2014 |
---|---|
Main Author: | Kharazishvili, A.B. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2014
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/166005 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On countable almost invariant partitions of g-spaces / A.B. Kharazishvili // Український математичний журнал. — 2014. — Т. 66, № 4. — С. 510–517. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On Countable Almost Invariant Partitions of G-Spaces
by: A. B. Kharazishvili
Published: (2014) -
G-Invariant Deformations of Almost-Coupling Poisson Structures
by: Vallejo, J.A., et al.
Published: (2017) -
Variants of a lattice of partitions of a countable set
by: Desiateryk, O.O., et al.
Published: (2018) -
Variants of a lattice of partitions of a countable set
by: Desiateryk, Oleksandra, et al.
Published: (2018) -
Balleans and G-spaces
by: Petrenko, O.V., et al.
Published: (2012)