Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions
We supplement recent results on a class of Bernstein–Durrmeyer operators preserving linear functions. This is done by discussing two limiting cases and proving quantitative Voronovskaya-type assertions involving the first-order and second-order moduli of smoothness. The results generalize and improv...
Saved in:
Date: | 2010 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2010
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/166181 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions / H. Gonska, R.Peltenia // Український математичний журнал. — 2010. — Т. 62, № 7. — С. 913–922. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | We supplement recent results on a class of Bernstein–Durrmeyer operators preserving linear functions. This is done by discussing two limiting cases and proving quantitative Voronovskaya-type assertions involving the first-order and second-order moduli of smoothness. The results generalize and improve earlier statements for Bernstein and genuine Bernstein–Durrmeyer operators. |
---|